AI Article Synopsis

  • Evolutionary selection allows naturally occurring protein assemblies to fit together optimally, which is challenging for current design methods.
  • A new design approach using reinforcement learning and Monte Carlo tree search effectively samples protein shapes while considering overall architecture and function.
  • The successfully designed protein structures, like nanopores and icosahedra, can enhance vaccine responses and improve angiogenesis, showcasing the efficacy of this top-down design strategy.

Article Abstract

As a result of evolutionary selection, the subunits of naturally occurring protein assemblies often fit together with substantial shape complementarity to generate architectures optimal for function in a manner not achievable by current design approaches. We describe a "top-down" reinforcement learning-based design approach that solves this problem using Monte Carlo tree search to sample protein conformers in the context of an overall architecture and specified functional constraints. Cryo-electron microscopy structures of the designed disk-shaped nanopores and ultracompact icosahedra are very close to the computational models. The icosohedra enable very-high-density display of immunogens and signaling molecules, which potentiates vaccine response and angiogenesis induction. Our approach enables the top-down design of complex protein nanomaterials with desired system properties and demonstrates the power of reinforcement learning in protein design.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adf6591DOI Listing

Publication Analysis

Top Keywords

top-down design
8
reinforcement learning
8
protein
5
design protein
4
protein architectures
4
architectures reinforcement
4
learning result
4
result evolutionary
4
evolutionary selection
4
selection subunits
4

Similar Publications

Background: Nanosuspension has emerged as an effective, lucrative, and unequalled approach for efficiently elevating the dissolution and bioavailability of aqueous soluble drugs. Diverse challenges persist within this domain, demanding further comprehensive investigation and exploration.

Objective: This study aims to design, develop, optimise formulation and process variables, and characterise the stabilised aqueous dissolvable nanosuspension using chlorthalidone as a BCS class- IV drug.

View Article and Find Full Text PDF

Background: Obesity is a multifactorial disease reaching pandemic proportions with increasing healthcare costs, advocating the development of better prevention and treatment strategies. Previous research indicates that the gut microbiome plays an important role in metabolic, hormonal, and neuronal cross-talk underlying eating behavior. We therefore aim to examine the effects of prebiotic and neurocognitive behavioral interventions on food decision-making and to assay the underlying mechanisms in a Randomized Controlled Trial (RCT).

View Article and Find Full Text PDF

Background: Forecasting future public pharmaceutical expenditure is a challenge for healthcare payers, particularly owing to the unpredictability of new market introductions and their economic impact. No best-practice forecasting methods have been established so far. The literature distinguishes between the top-down approach, based on historical trends, and the bottom-up approach, using a combination of historical and horizon scanning data.

View Article and Find Full Text PDF

Proteoform Identification and Quantification Based on Alignment Graphs.

Bioinformatics

January 2025

Department of Computer Science, City University of Hong Kong, Hong Kong, China.

Motivation: Proteoforms are the different forms of a proteins generated from the genome with various sequence variations, splice isoforms, and post-translational modifications. Proteoforms regulate protein structures and functions. A single protein can have multiple proteoforms due to different modification sites.

View Article and Find Full Text PDF

A Neural-Network-Based Mapping and Optimization Framework for High-Precision Coarse-Grained Simulation.

J Chem Theory Comput

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

The accuracy and efficiency of a coarse-grained (CG) force field are pivotal for high-precision molecular simulations of large systems with complex molecules. We present an automated mapping and optimization framework for molecular simulation (AMOFMS), which is designed to streamline and improve the force field optimization process. It features a neural-network-based mapping function, DSGPM-TP (deep supervised graph partitioning model with type prediction).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!