Selective anion sensing by luminescent chemosensors capable of operating in aqueous conditions is a central field of modern supramolecular chemistry that impacts analytical and biological chemistry. A cationic cyclometalated [Pt(N^C^N)NCCH]OTf complex, [N^C^N = 1,3-bis(1-(-tolyl)-benzimidazol-2'-yl)benzene, OTf = triflate], was prepared, structurally described by single-crystal X-ray diffraction and studied in-depth as a luminescent chemosensor for anions in aqueous phase and solid state. A series of related neutral [Pt(N^C^N)X] complexes (X = Cl, ; CN, and I, ) were formed readily upon treatment of with the respective NaX salt in aqueous media and were described structurally by X-ray diffraction. Complex is hydrostable with phosphorescent green emission originated by intraligand transitions, and [d(Pt) → π*(N^C^N)] charge transfer transitions, as evidenced by TD-DFT calculations and lifetime. Additions of halides, pseudohalides, oxyanions, and dicarboxylates to a neutral aqueous solution of modified its green emission intensity with a pronounced affinity ( = 1.5 × 10 M) and turn-on signal toward Cl within the micromolar concentration range. Pt complex is two orders of magnitude more selective for Cl than the other halides, CN and basic oxyanions. Such Cl affinity for a metal-based chemosensor in aqueous media is still rare. On the basis of X-ray crystallographic analysis and multiple spectroscopic tools (NMR, UV-vis, luminescence, MS, lifetimes) the origin of this selectivity hinges on the cooperative three-point recognition involving one coordination bond (Pt-Cl) and two convergent short C-H···Cl contacts. This strong affinity and efficient optical response can be utilized in quantitative Cl sensing in real samples and solid-liquid extractions. Additionally, chloro-Pt complex, may be relevant to bioimaging as a marker for cell nuclei, as revealed by its emission within living cells and intracellular distribution by confocal microscopic studies. These results demonstrate the usefulness of the new water-stable luminescent Pt-N^C^N complexes as effective analytical tools in anion sensing and extraction agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c04558 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
Herein, we present a novel liquid crystal (LC)-based sensing platform utilizing microgel-stabilized Pickering LC droplets dispersed in water for simple and label-free detection of proteins in an aqueous environment. This could be achieved by tailoring the surface of 4-cyano-4'-pentylbiphenyl (5CB) LC droplets dispersed in aqueous medium through the interfacial adsorption of poly(-isopropylacrylamide) (PNIPAM) microgel particles, followed by the introduction of model surfactants, such as anionic sodium dodecyl sulfate and cationic dodecyltrimethylammonium bromide. These surfactant/microgel complex-coated LC droplets underwent a configurational transition from radial-to-bipolar under a polarized optical microscope, upon exposure to model proteins, namely bovine serum albumin and lysozyme.
View Article and Find Full Text PDFNat Commun
January 2025
School of Animal Sciences, Virginia Tech, Blacksburg, USA.
The diagnosis of milk fever or hypocalcemia in lactating cows has a significant economic impact on the dairy industry. It is challenging to identify asymptomatic subclinical hypocalcemia (SCH) in transition dairy cows. Monitoring subclinical hypocalcemia in milk samples can expedite treatment and improve the health, productivity, and welfare of dairy cows.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
Threads coated with bioresponsive materials hold promise for innovative wearable diagnostics. However, most thread coatings reported so far cannot be easily customized for different analytes and frequently incorporate non-biodegradable components. Most optically active thread coatings rely on dyes, which often exhibit irreversible responses.
View Article and Find Full Text PDFChem Asian J
December 2024
Indian Institute of Science Education and Research Kolkata, Chemical Sciences, INDIA.
Amphiphilic dimeric cyanostilbenes with two donor-acceptor moieties connected through variable aliphatic linkers displayed aggregation in aqueous media to produce red emissive nano-assemblies. In the presence of anionic biopolymers such as ctDNA and heparin, they formed electrostatically driven co-assemblies with enhanced luminescence. Moreover, due to the chiral nature of the bio-templates DNA and heparin, the co-assemblies demonstrated induced chirality features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!