Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Because of the recent progress in materials properties, specifically high-strength concrete, further research is needed to evaluate its suitability, understanding, and performance in the modern-day world. This research aims to enhance the performance of ultra-high-strength geopolymer concrete (UHS-GPC) by adding nano-silica (NS) and polypropylene fibers (PPFs). Three 1%, 2%, and 3% different amounts of PPFs and three NS 5%, 10%, and 15% were utilized in the samples. Various performance parameters of UHS-GPC were evaluated, such as fresh property, compressive strength, modulus of elasticity split tensile, flexural and bonding strength, drying shrinkage, load-displacement test, fracture performance, and elevated temperature. The test outcomes showed that by raising the percentage of PPFs and NS to the allowable limit, the performance of UHS-GPC can be improved significantly. The most improved performance of UHS-GPC was obtained at 2% polypropylene fibers and 10% nano-silica, as the compressive, splitting tensile, flexural. Bond strength was improved by 17.07%, 47.1%, 36.52, and 37.58%, and the modulus of elasticity increased by 31.4% at 56 days. The study showed that the sample with 2% PPFs and 10% NS had excellent performance in the load-displacement test, drying shrinkage, fracture behavior, and elevated temperature. At 750°C elevated temperature, the samples' strength was reduced drastically, but at 250°C, the modified samples showed good resistance to heat by retaining their compressive strength to some degree. The present work showed the suitability of PPFs and NS to develop ultra-high-strength geopolymer concrete, which can be used as a possible alternate material for Portland cement-based concrete.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10118105 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282435 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!