Transcranial alternating current stimulation (tACS) is considered to have a positive effect on the rehabilitation of Alzheimer's disease (AD) as an intervention method that matches stimulation frequency to neurogenesis frequency. However, when tACS intervention is delivered to a single target, the current received by brain regions outside the target may be insufficient to trigger neural activity, compromising the effectiveness of stimulation. Therefore, it is worth studying how single-target tACS restores gamma-band activity in the whole hippocampal-prefrontal circuit during rehabilitation. We used Sim4Life software to conduct finite element methods (FEM) on the stimulation parameters to ensure that tACS intervened only in the right hippocampus (rHPC) and did not activate the left hippocampus (lHPC) or prefrontal cortex (PFC). We stimulated the rHPC by tACS for 21 days to improve the memory function of AD mice. We simultaneously recorded local field potentials (LFPs) in the rHP, lHPC and PFC and evaluated the neural rehabilitative effect of tACS stimulation with power spectral density (PSD), cross-frequency coupling (CFC) and Granger causality. Compared to the untreated group, the tACS group exhibited an increase in the Granger causality connection and CFC between the rHPC and PFC, a decrease in those between the lHPC and PFC, and enhanced performance on the Y-maze test. These results suggest that tACS may serve as a noninvasive method for Alzheimer's disease rehabilitation by ameliorating abnormal gamma oscillation in the hippocampal-prefrontal circuit.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2023.3265378DOI Listing

Publication Analysis

Top Keywords

transcranial alternating
8
alternating current
8
current stimulation
8
memory function
8
ameliorating abnormal
8
abnormal gamma
8
gamma oscillation
8
tacs
8
alzheimer's disease
8
hippocampal-prefrontal circuit
8

Similar Publications

Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).

View Article and Find Full Text PDF

Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, noninvasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and nonclinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. To inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations.

View Article and Find Full Text PDF

Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) at 5-Hz to the right hemisphere can alleviate anxiety symptoms. We aimed to explore the connectivity changes following the treatment. We collected electroencephalography (EEG) data from 24 participants with anxiety disorders before and after the tACS treatment during a single session.

View Article and Find Full Text PDF

Preliminary Evidence for Perturbation-Based tACS-EEG Biomarkers of Gamma Activity in Alzheimer's Disease.

Int J Geriatr Psychiatry

January 2025

Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!