Purpose: In laparoscopic liver surgery, preoperative information can be overlaid onto the intra-operative scene by registering a 3D preoperative model to the intra-operative partial surface reconstructed from the laparoscopic video. To assist with this task, we explore the use of learning-based feature descriptors, which, to our best knowledge, have not been explored for use in laparoscopic liver registration. Furthermore, a dataset to train and evaluate the use of learning-based descriptors does not exist.
Methods: We present the LiverMatch dataset consisting of 16 preoperative models and their simulated intra-operative 3D surfaces. We also propose the LiverMatch network designed for this task, which outputs per-point feature descriptors, visibility scores, and matched points.
Results: We compare the proposed LiverMatch network with a network closest to LiverMatch and a histogram-based 3D descriptor on the testing split of the LiverMatch dataset, which includes two unseen preoperative models and 1400 intra-operative surfaces. Results suggest that our LiverMatch network can predict more accurate and dense matches than the other two methods and can be seamlessly integrated with a RANSAC-ICP-based registration algorithm to achieve an accurate initial alignment.
Conclusion: The use of learning-based feature descriptors in laparoscopic liver registration (LLR) is promising, as it can help achieve an accurate initial rigid alignment, which, in turn, serves as an initialization for subsequent non-rigid registration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330103 | PMC |
http://dx.doi.org/10.1007/s11548-023-02893-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!