The initiation of a hand grip is delayed by silently reading an incompatible syllable.

Psychol Res

Centre for Motor Control, Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada.

Published: November 2023

The movements of phonation structures (e.g., tongue) have been shown to facilitate compatible hand movements. For example, reaction time (RT) of precision and power hand grips (made with tips of thumb and finger vs. whole hand) are shortened with the production of syllables that share similar action features (e.g., employing the proximal vs. dorsal portion of the tongue, respectively). This effect is coined the articulation-grip correspondence (AGC) effect. However, it is not known if the AGC effect is due to action facilitation vs. interference, and if such facilitation/ interference is due to covertly or overtly reading the syllable. To answer the associated empirical questions, the present experiment involved participants initiating a precision or power grip without the covert/ overt reading of a syllable, or while covertly or overtly reading the syllable /ti/ or /ka/. In both the covert and overt reading conditions, there were longer RTs for precision grips with the syllable /ka/ than /ti/, and there were longer RTs for power grips with the syllable /ti/. In contrast, the syllable /ti/ or /ka/ did not alter precision or power grip RTs, respectively. These findings support the notion of articulation-grip interference but not facilitation and that such interference can be observed with covert (silent) reading.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00426-023-01828-6DOI Listing

Publication Analysis

Top Keywords

precision power
12
reading syllable
12
syllable /ti/
12
facilitation interference
8
covertly overtly
8
overtly reading
8
power grip
8
overt reading
8
/ti/ /ka/
8
longer rts
8

Similar Publications

Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.

View Article and Find Full Text PDF

Estimating cardiovascular mortality in patients with hypertension using machine learning: The role of depression classification based on lifestyle and physical activity.

J Psychosom Res

December 2024

Badminton Technical and Tactical Analysis and Diagnostic Laboratory, National Academy of Badminton, Guangzhou Sport University, Guangzhou 510500, China. Electronic address:

Purpose: This study aims to harness machine learning techniques, particularly the Random Survival Forest (RSF) model, to assess the impact of depression on cardiovascular disease (CVD) mortality among hypertensive patients. A key objective is to elucidate the interplay between mental health, lifestyle, and physical activity while comparing the effectiveness of the RSF model against the traditional Cox proportional hazards model in predicting CVD mortality.

Methods: Data from the National Health and Nutrition Examination Survey (NHANES) spanning 2007 to 2014 were used for comprehensive depression screening.

View Article and Find Full Text PDF

Detecting shielded special nuclear material, such as nuclear explosives, is a difficult challenge pursued by non-proliferation, anti-terrorism, and nuclear security programs worldwide. Interrogation with intense fast-neutron pulses is a promising method to characterize concealed nuclear material rapidly but is limited by suitable source availability and proven instrumentation. In this study we have pioneered a demonstration of such an interrogation method using a high-intensity, short-pulse, laser-driven neutron source that offers potential benefits compared to conventional neutron sources.

View Article and Find Full Text PDF

Promoting defect formation and inhibiting hydrogen evolution by S-doping NiFe layered double hydroxide for electrocatalytic reduction of nitrate to ammonia.

Water Res

December 2024

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address:

Activation of HO cleavage for H* production by defect engineering eliminates the insufficient supply of protons in the NORR process under neutral conditions. However, it remains challenging to precisely control the defect formation for optimizing the equilibrium between H* production and H* binding. Here, we propose a strategy to boost defect generation through S-doping induced NiFe-LDH lattice distortion, and successfully optimize the balance of H* production and binding.

View Article and Find Full Text PDF

Precise Synthesis of 4.75 V-Tolerant LiCoO with Homogeneous Delithiation and Reduced Internal Strain.

J Am Chem Soc

January 2025

College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

The rapid advancements in 3C electronic devices necessitate an increase in the charge cutoff voltage of LiCoO to unlock a higher energy density that surpasses the currently available levels. However, the structural devastation and electrochemical decay of LiCoO are significantly exacerbated, particularly at ≥4.5 V, due to the stress concentration caused by more severe lattice expansion and shrinkage, coupled with heterogeneous Li intercalation/deintercalation reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!