Stress-Resistance and Growth-Promoting Characteristics and Effects on Vegetable Seed Germination of Streptomyces sp. Strains Isolated from Wetland Plant Rhizospheres.

Curr Microbiol

College of Life Sciences, Key Laborary of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.

Published: April 2023

Wetlands are the most biologically diverse ecosystems on Earth. The isolation of Streptomyces strains from wetlands is helpful to study their diversity and functions in such habitats. In this study, six strains of Streptomyces were isolated from the rhizosphere soil of three plant species in the Huaxi Wetland at Guiyang and were identified as Streptomyces galilaeus, S. avidinii, S. albogriseolus, S. albidoflavus, S. spororaveus, and S. cellulosae, respectively. The six strains all solubilized phosphate, fixed nitrogen, and produced ACC deaminase and siderophores, and four strains also secreted indole-3-acetic acid. The six strains had the ability to resist to certain degrees of salinity, drought, and acidic/alkaline pH stress. In addition, the S. avidinii WL3 and S. cellulosae WL9 strains significantly promoted seed germination of mung bean, pepper, and cucumber, especially the WL3 strain. A pot experiment further showed that WL3 significantly promoted the growth of cucumber seedlings. Thus, strains of six species of Streptomyces with multiple plant growth-promoting characteristics were isolated from the wetland. These results lay a foundation for their potential use as microbial agents for seed-coating treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-023-03297-xDOI Listing

Publication Analysis

Top Keywords

growth-promoting characteristics
8
seed germination
8
strains
8
streptomyces strains
8
isolated wetland
8
streptomyces
5
stress-resistance growth-promoting
4
characteristics effects
4
effects vegetable
4
vegetable seed
4

Similar Publications

Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as J2-5-19.

View Article and Find Full Text PDF

strain PJH16, isolated and tested by our team, suppresses cucumber wilt as an efficient biocontrol agent. For further investigation, the strain has been combined with two other ( VJH504 and JNF2) to enhance biocontrol ability, which formed high-efficiency microbial agents in the current study. The methodological target taken is based on achieving the optimal growth conditions of the combined microbial agents; hence, the medium composition and culture conditions were optimized through a single-factor test, orthogonal test and response surface methodology.

View Article and Find Full Text PDF

Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria.

View Article and Find Full Text PDF

With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components.

View Article and Find Full Text PDF

Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!