NMDA-type ionotropic glutamate receptors are critical for normal brain function and are implicated in central nervous system disorders. Structure and function of NMDA receptors composed of GluN1 and GluN3 subunits are less understood compared to those composed of GluN1 and GluN2 subunits. GluN1/3 receptors display unusual activation properties in which binding of glycine to GluN1 elicits strong desensitization, while glycine binding to GluN3 alone is sufficient for activation. Here, we explore mechanisms by which GluN1-selective competitive antagonists, CGP-78608 and L-689,560, potentiate GluN1/3A and GluN1/3B receptors by preventing glycine binding to GluN1. We show that both CGP-78608 and L-689,560 prevent desensitization of GluN1/3 receptors, but CGP-78608-bound receptors display higher glycine potency and efficacy at GluN3 subunits compared to L-689,560-bound receptors. Furthermore, we demonstrate that L-689,560 is a potent antagonist of GluN1FA+TL/3A receptors, which are mutated to abolish glycine binding to GluN1, and that this inhibition is mediated by a non-competitive mechanism involving binding to the mutated GluN1 agonist binding domain (ABD) to negatively modulate glycine potency at GluN3A. Molecular dynamics simulations reveal that CGP-78608 and L-689,560 binding or mutations in the GluN1 glycine binding site promote distinct conformations of the GluN1 ABD, suggesting that the GluN1 ABD conformation influences agonist potency and efficacy at GluN3 subunits. These results uncover the mechanism that enables activation of native GluN1/3A receptors by application of glycine in the presence of CGP-78608, but not L-689,560, and demonstrate strong intra-subunit allosteric interactions in GluN1/3 receptors that may be relevant to neuronal signaling in brain function and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10125900 | PMC |
http://dx.doi.org/10.1085/jgp.202313340 | DOI Listing |
Sci Data
December 2024
Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
Abscisic acid (ABA) is a crucial phytohormone that regulates plant growth and stress responses. While substantial knowledge exists about transcriptional regulation, the molecular mechanisms underlying ABA-triggered translational regulation remain unclear. Recent advances in deep sequencing of ribosome footprints (Ribo-seq) enable the mapping and quantification of mRNA translation efficiency.
View Article and Find Full Text PDFVet Sci
November 2024
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.
Pigeon Newcastle disease (ND) is the most common viral infectious disease in the pigeon industry, caused by pigeon paramyxovirus type 1 (PPMV-1), a variant of chicken-origin Newcastle disease virus (NDV). Previous studies have identified significant amino acid differences between PPMV-1 and chicken-origin NDV at positions 347 and 349 in the hemagglutinin-neuraminidase (HN) protein, with PPMV-1 predominantly exhibiting glycine (G) at position 347 and glutamic acid (E) at position 349, while most chicken-origin NDVs show E at position 347 and aspartic acid (D) at position 349. However, the impact of these amino acid substitutions remains unclear.
View Article and Find Full Text PDFSaudi Pharm J
December 2024
School of Biological Science, Jining Medical University, Rizhao 276826, Shandong Province, PR China.
Phenylacetylglycine (PAGly) is a small molecule derived from phenylalanine in the gut glycine degradation and conjugation. It has been associated with both the progression of atherosclerosis and protective effects on the myocardium. This study evaluated the function and the underlying mechanisms of PAGly in a rat cerebral ischemia/reperfusion (I/R) injury model.
View Article and Find Full Text PDFGenome Biol
December 2024
State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China.
Background: Transcription factors (TFs) bind regulatory genomic regions to orchestrate spatio-temporal expression of target genes. Global dissection of the cistrome is critical for elucidating transcriptional networks underlying complex agronomic traits in crops.
Results: Here, we generate a comprehensive genome-wide binding map for 148 TFs using DNA affinity purification sequencing in soybean.
Biochem Biophys Res Commun
January 2025
Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. Electronic address:
Serine hydroxymethyltransferase (SHMT) plays a critical role in the 1C metabolism pathway. This pathway is involved in the synthesis of many amino and nucleic acids, and SHMT is considered a target for drugs through folate metabolism, especially for cancer and malaria. A detailed analysis of the interactions between SHMTs and drugs will greatly contribute to the development of new drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!