Machine Learning Models Capture Plasmon Dynamics in Ag Nanoparticles.

J Phys Chem A

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Published: May 2023

Highly energetic electron-hole pairs (hot carriers) formed from plasmon decay in metallic nanostructures promise sustainable pathways for energy-harvesting devices. However, efficient collection before thermalization remains an obstacle for realization of their full energy generating potential. Addressing this challenge requires detailed understanding of physical processes from plasmon excitation in the metal to their collection in a molecule or a semiconductor, where atomistic theoretical investigation may be particularly beneficial. Unfortunately, first-principles theoretical modeling of these processes is extremely costly, preventing a detailed analysis over a large number of potential nanostructures and limiting the analysis to systems with a few 100s of atoms. Recent advances in machine learned interatomic potentials suggest that dynamics can be accelerated with surrogate models which replace the full solution of the Schrödinger Equation. Here, we modify an existing neural network, Hierarchically Interacting Particle Neural Network (HIP-NN), to predict plasmon dynamics in Ag nanoparticles. The model takes as a minimum as three time steps of the reference real-time time-dependent density functional theory (rt-TDDFT) calculated charges as history and predicts trajectories for 5 fs in great agreement with the reference simulation. Further, we show that a multistep training approach in which the loss function includes errors from future time-step predictions can stabilize the model predictions for the entire simulated trajectory (∼25 fs). This extends the model's capability to accurately predict plasmon dynamics in large nanoparticles of up to 561 atoms, not present in the training data set. More importantly, with machine learning models on GPUs, we gain a speed-up factor of ∼10 as compared with the rt-TDDFT calculations when predicting important physical quantities such as dynamic dipole moments in Ag and a factor of ∼10 for extended nanoparticles that are 10 times larger. This underscores the promise of future machine learning accelerated electron/nuclear dynamics simulations for understanding fundamental properties of plasmon-driven hot carrier devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165650PMC
http://dx.doi.org/10.1021/acs.jpca.2c08757DOI Listing

Publication Analysis

Top Keywords

machine learning
12
plasmon dynamics
12
learning models
8
dynamics nanoparticles
8
neural network
8
predict plasmon
8
factor ∼10
8
plasmon
5
dynamics
5
machine
4

Similar Publications

BMT: A Cross-Validated ThinPrep Pap Cervical Cytology Dataset for Machine Learning Model Training and Validation.

Sci Data

December 2024

Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI, 02912, USA.

In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually edited out, or are prepared using the conventional Pap smear method. Multicellular liquid Pap image datasets are a more accurate reflection of current cervical screening techniques.

View Article and Find Full Text PDF

Background: High triglyceride (TG) affects and is affected of other hematological factors. The determination of serum fasted triglycerides concentrations, as part of a lipid profile, is crucial key point in hematological factors and significantly affect various systemic diseases. This study was carried out to assess the potential relation between the concentration of TG and hematological factors.

View Article and Find Full Text PDF

Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory.

View Article and Find Full Text PDF

Bias in machine learning applications to address non-communicable diseases at a population-level: a scoping review.

BMC Public Health

December 2024

Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.

Background: Machine learning (ML) is increasingly used in population and public health to support epidemiological studies, surveillance, and evaluation. Our objective was to conduct a scoping review to identify studies that use ML in population health, with a focus on its use in non-communicable diseases (NCDs). We also examine potential algorithmic biases in model design, training, and implementation, as well as efforts to mitigate these biases.

View Article and Find Full Text PDF

Development and Validation of a Nomogram Based on Multiparametric MRI for Predicting Lymph Node Metastasis in Endometrial Cancer: A Retrospective Cohort Study.

Acad Radiol

December 2024

Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:

Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).

Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!