Mobilisation of seed storage reserves is important for seedling establishment in . In this process, sucrose is synthesised from triacylglycerol via core metabolic processes. Mutants with defects in triacylglycerol-to-sucrose conversion display short etiolated seedlings. We found that whereas sucrose content in the () mutant was significantly reduced, hypocotyl elongation in the dark was unaffected, questioning the role of IBR10 in this process. To dissect the metabolic complexity behind cell elongation, a quantitative-based phenotypic analysis combined with a multi-platform metabolomics approach was applied. We revealed that triacylglycerol and diacylglycerol breakdown were disrupted in , resulting in low sugar content and poor photosynthetic ability. Importantly, batch-learning self-organised map clustering revealed that threonine level was correlated with hypocotyl length. Consistently, exogenous threonine supply stimulated hypocotyl elongation, indicating that sucrose levels are not always correlated with etiolated seedling length, suggesting the contribution of amino acids in this process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095960 | PMC |
http://dx.doi.org/10.1017/qpb.2022.19 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!