A healthy stress response is critical for good mental and overall health and promotes neuronal growth and adaptation, but the intricately balanced biological mechanisms that facilitate a stress response can also result in predisposition to disease when that equilibrium is disrupted. The hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine system plays a critical role in the body's response and adaptation to stress, and vasopressinergic regulation of the HPA axis is critical to maintaining system responsiveness during chronic stress. However, exposure to repeated or excessive physical or emotional stress or trauma can shift the body's stress response equilibrium to a "new normal" underpinned by enduring changes in HPA axis function. Exposure to early life stress due to adverse childhood experiences can also lead to lasting neurobiological changes, including in HPA axis function. HPA axis impairment in patients with depression is considered among the most reliable findings in biological psychiatry, and chronic stress has been shown to play a major role in the pathogenesis and onset of depression and other neuropsychiatric disorders. Modulating HPA axis activity, for example via targeted antagonism of the vasopressin V receptor, is a promising approach for patients with depression and other neuropsychiatric disorders associated with HPA axis impairment. Despite favorable preclinical indications in animal models, demonstration of clinical efficacy for the treatment of depressive disorders by targeting HPA axis dysfunction has been challenging, possibly due to the heterogeneity and syndromal nature of depressive disorders. Measures of HPA axis function, such as elevated cortisol levels, may be useful biomarkers for identifying patients who may benefit from treatments that modulate HPA axis activity. Utilizing clinical biomarkers to identify subsets of patients with impaired HPA axis function who may benefit is a promising next step in fine-tuning HPA axis activity via targeted antagonism of the V receptor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106826 | PMC |
http://dx.doi.org/10.2147/NDT.S402831 | DOI Listing |
Exp Neurol
January 2025
Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Perioperative neurocognitive disorders (PNDs) refer to a wide spectrum of cognitive impairment persisting days to even after a year postoperative with significant morbidity and mortality. However, despite much efforts involving perioperative managements, PNDs are still prevalent with no standard preventative and therapeutic strategy. To overcome PNDs, a better understanding of pathophysiology of PNDs is crucial and a large number of studies have proven that immune-inflammatory responses from surgical stress are involved in the abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis and destabilization of neurovascular unit (NVU) that lead to PNDs.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmacy, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
Background: Diagnosis and intervention of prediabetes is an emerging approach to preventing the progression and complications of diabetes. Inflammatory factors and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis have been suggested as potential mechanisms underlying the pathogenesis of both diabetes and depression. However, the relationship between depression levels and the prevalence of prediabetes and its prognosis remains elusive.
View Article and Find Full Text PDFBrain Behav Immun Health
February 2025
Department of Psychiatry, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
Severe mental disorders are multi-dimensional constructs, resulting from the interaction of genetic, biological, psychosocial, and environmental factors. Among the latter, pollution and climate change are frequently being considered in the etiopathogenesis of severe mental disorders. This systematic review aims to investigate the biological mechanisms behind the relationship between environmental pollutants, climate change, and mental disorders.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.
Background And Purpose: Radiotherapy for brain, head & neck (HN), and skull base (SB) tumors may deliver significant radiation dose to the hypothalamic-pituitary axis (HPA), leading to impaired functioning of this region and hence, to endocrine disorders. The purpose of this systematic review and -analysis is to investigate literature on HP dysfunction after radiation for non-pituitary brain, HN, or SB tumors at adult age, aiming to give insight in the prevalence of HP dysfunction related to radiation dose.
Materials And Methods: Literature search of the PubMed database was performed for HP dysfunction after radiotherapy in adult patients.
Neuropeptides
January 2025
Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary.
Corticotropin-releasing factor (CRF) and urocortins (UCN1, UCN2 and UCN3) belong to the same CRF family of neuropeptides. They regulate the neuroendocrine, autonomic and behavioral responses to stress via two CRF receptors (CRF1 and CRF2). Stress, anxiety and depression affects the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the serotoninergic neurotransmission, both being regulated by CRF and CRF-related peptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!