A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performance and exergy analysis of an inclined solar still with baffle arrangements. | LitMetric

This study presents the details of performance and exergy investigations on an inclined solar still with baffle arrangements. The shortage of consumable water creates the transformation of accessible brackish water into consumable water an unavoidable one and this can be accomplished utilizing sun-oriented refining. To remove drinkable water from pungent water, sun-oriented still is broadly utilized. To build the contact season of the pungent water with sunlight-based brilliance, perplex course of action is set to expand the opposition in the stream. This prompts more vanishing of brackish water. Therefore, the objective of this study is to improve freshwater yield. The experimental study is performed for two different mass flow rates (m = 0.0833 kg/min and m = 0.166 kg/min). An increase in the mass flow of water directly deteriorates the yield of fresh water. Highest accumulated freshwater yield is achieved as 2.908 kg/m day during the month of May for m = 0.0833 kg/min. The accumulated freshwater yield improved by 4.23% in comparison with inclined solar still designs. Moreover, the yield is better by 3.49%-61.56% in comparison with various solar still designs. Using RSM, a polynomial statistical model is specified to estimate as well as maximize the freshwater yield of ISSB. The exergy analysis for m = 0.0833 kg/min shows a maximum hourly exergy efficiency of 6.82%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106519PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e14807DOI Listing

Publication Analysis

Top Keywords

freshwater yield
16
inclined solar
12
water
9
performance exergy
8
exergy analysis
8
solar baffle
8
baffle arrangements
8
consumable water
8
brackish water
8
pungent water
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!