Purpose: Dipeptidyl peptidase-4 (DPP-4) inhibitors increase endothelial progenitor cells (EPCs) in peripheral blood circulation. However, the underlying mechanisms and effects on vascular endothelial function remain unclear. We evaluated whether the DPP-4 inhibitor teneligliptin increases circulating EPCs by inhibiting stromal-derived factor-1α (SDF-1α) and improves flow-mediated vascular dilatation (FMD) in type 2 diabetes mellitus patients with acute coronary syndrome (ACS) or its risk factors.

Patients And Methods: This single-center, open-label, prospective, randomized controlled trial evaluated 17 patients (hemoglobin A1c ≤7.5% and peak creatinine phosphokinase <2000 IU/mL) with ACS or a history of ACS or multiple cardiovascular risk factors. Metabolic variables of glucose and lipids, circulating EPCs, plasma DPP-4 activity, and SDF-1α levels, and FMD were evaluated at baseline and 28 ± 4 weeks after enrollment. Patients were randomly assigned to either the teneligliptin (n = 8) or control (n = 9) groups.

Results: The DPP-4 activity (∆-509.5 ± 105.7 vs ∆32.8 ± 53.4 μU/mL) and SDF-1α levels (∆-695.6 ± 443.2 vs ∆11.1 ± 193.7 pg/mL) were significantly decreased after 28 weeks in the teneligliptin group than those in the control group. The number of EPCs showed an increasing trend in the teneligliptin treated group; albeit this did not reach statistical significance. Glucose and lipid levels were not significantly different between the groups before and after 28 weeks. However, FMD was significantly improved in the teneligliptin group when compared to the control group (∆3.8% ± 2.1% vs ∆-0.3% ± 2.9%, =0.006).

Conclusion: Teneligliptin improved FMD through a mechanism other than increasing the number of circulating EPCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108873PMC
http://dx.doi.org/10.2147/DMSO.S403125DOI Listing

Publication Analysis

Top Keywords

dpp-4 inhibitor
8
vascular endothelial
8
endothelial function
8
endothelial progenitor
8
progenitor cells
8
teneligliptin dpp-4
4
inhibitor improves
4
improves vascular
4
endothelial
4
function divergent
4

Similar Publications

Proximate composition, peptide characterization and bioactive properties of faba bean blanching water.

Food Res Int

January 2025

The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.

Faba bean (Vicia faba L.) offers a rich nutritional profile with high protein content and abundant vitamins and minerals. Processing of faba beans for freezing requires blanching, yielding liluva (legume processing water), possibly containing leached macronutrients, with potential for upcycling.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common disease associated with cognitive dysfunction, which is closely associated with type 2 diabetes mellitus (T2DM) in clinical manifestations, pathological changes and prevention. Inhibition of dipeptidyl peptidase 4 (DPP-4) can lower blood glucose levels by stimulating insulin secretion. Besides, it can affect cognitive function through the neuroprotective effect of DPP-4 substrates, such as glucose-dependent insulin peptide and glucagon-like peptide-1, the proteolytic effect on amyloid-β and the protective effect on neuronal structure.

View Article and Find Full Text PDF

Impact of DPP-4 Inhibitors in Patients with Diabetes Mellitus and Heart Failure: An In-Depth Review.

Medicina (Kaunas)

December 2024

Medicine Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, 08208 Sabadell, Spain.

The increasing prevalence of both type 2 diabetes mellitus and heart failure has underscored the urgent need for optimized therapeutic strategies that address the complex interplay between these conditions. Dipeptidyl peptidase-4 (DPP-4) inhibitors have emerged as a popular class of glucose-lowering agents due to their favorable glycemic effects, safety profile, and potential cardiovascular benefits. However, the impact of DPP-4 inhibitors on heart failure outcomes in patients with diabetes remains contentious, with conflicting evidence from clinical trials and observational studies.

View Article and Find Full Text PDF

In Vivo and Computational Studies on Sitagliptin's Neuroprotective Role in Type 2 Diabetes Mellitus: Implications for Alzheimer's Disease.

Brain Sci

November 2024

Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.

Background/objectives: Diabetes mellitus (DM), a widespread endocrine disorder characterized by chronic hyperglycemia, can cause nerve damage and increase the risk of neurodegenerative diseases such as Alzheimer's disease (AD). Effective blood glucose management is essential, and sitagliptin (SITG), a dipeptidyl peptidase-4 () inhibitor, may offer neuroprotective benefits in type 2 diabetes mellitus (T2DM).

Methods: T2DM was induced in rats using nicotinamide (NICO) and streptozotocin (STZ), and biomarkers of AD and DM-linked enzymes, inflammation, oxidative stress, and apoptosis were evaluated in the brain.

View Article and Find Full Text PDF

The thieno[2,3-d]pyrimidine fragment is in the structure of many drug-like candidate derivatives with a wide range of biological activities. However, very few dipeptidyl peptidase-4 (DPP-4) inhibitors with this building block are currently known. Here, the selection of a novel DPP-4 inhibitor based on the thienopyrimidine scaffold is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!