Lung adenocarcinoma (LUAD) is an aggressive disease of heterogeneous characteristics with poor prognosis and high mortality. Pyroptosis, a newly uncovered type of programmed cell death with an inflammatory nature, has been determined to hold substantial importance in the progression of tumors. Despite this, the knowledge about pyroptosis-related genes (PRGs) in LUAD is limited. This study aimed to develop and validate a prognostic signature for LUAD based on PRGs. In this research, gene expression information from The Cancer Genome Atlas (TCGA) served as the training cohort and data from Gene Expression Omnibus (GEO) was utilized as the validation cohort. PRGs list was taken from the Molecular Signatures Database (MSigDB) and previous studies. Univariate Cox regression and Lasso analysis were then conducted to identify prognostic PRGs and develop a LUAD prognostic signature. The Kaplan-Meier method, univariate and multivariate Cox regression models were employed to assess the independent prognostic value and forecasting accuracy of the pyroptosis-related prognostic signature. The correlation between prognostic signature and immune infiltrating was analyzed to examine the role in tumor diagnosis and immunotherapy. Further, RNA-seq as well as quantitative real-time polymerase chain reaction (qRT-PCR) analysis in separate data sets was applied in order to validate the potential biomarkers for LUAD. A novel prognostic signature based on 8 PRGs (BAK1, CHMP2A, CYCS, IL1A, CASP9, NLRC4, NLRP1, and NOD1) was established to predict the survival of LUAD. The prognostic signature proved to be an independent prognostic factor of LUAD with satisfactory sensitivity and specificity in the training and validation sets. High-risk scores subgroups in the prognostic signature were significantly associated with advanced tumor stage, poor prognosis, less immune cell infiltration, and immune function deficiency. RNA sequencing and qRT-PCR analysis confirmed that the expression of CHMP2A and NLRC4 could be used as biomarkers for LUAD. We have successfully developed a prognostic signature consisting of eight PRGs that providing a novel perspective on predicting prognosis, assessing infiltration levels of tumor immune cells, and determining the outcomes of immunotherapy for LUAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106613PMC
http://dx.doi.org/10.3389/fgene.2023.1160915DOI Listing

Publication Analysis

Top Keywords

prognostic signature
36
prognostic
12
signature
9
luad
9
pyroptosis-related prognostic
8
lung adenocarcinoma
8
poor prognosis
8
based prgs
8
gene expression
8
cox regression
8

Similar Publications

Endosomes play a pivotal role in cellular biology, orchestrating processes such as endocytosis, molecular trafficking, signal transduction, and recycling of cellular materials. This study aims to construct an endosome-related gene (ERG)-derived risk signature for breast cancer prognosis. Transcriptomic and clinical data were retrieved from The Cancer Genome Atlas and the University of California Santa Cruz databases to build and validate the model.

View Article and Find Full Text PDF

Purpose: To detect the prognostic importance of liquid-liquid phase separation (LLPS) in lung adenocarcinoma.

Methods: The gene expression files, copy number variation data, and clinical data were downloaded from The Cancer Genome Atlas cohort. LLPS-related genes were acquired from the DrLLPS website.

View Article and Find Full Text PDF

Prostate cancer (PCa) is one of the most common cancers in men worldwide. Autophagy-related genes (ARGs) may play an important role in various biological processes of PCa. The aim of this study was to identify and evaluate autophagy-related features to predict clinical outcomes in patients with PCa.

View Article and Find Full Text PDF

Network-based transfer of pan-cancer immunotherapy responses to guide breast cancer prognosis.

NPJ Syst Biol Appl

January 2025

Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China.

Breast cancer prognosis is complicated by tumor heterogeneity. Traditional methods focus on cancer-specific gene signatures, but cross-cancer strategies that provide deeper insights into tumor homogeneity are rarely used. Immunotherapy, particularly immune checkpoint inhibitors, results from variable responses across cancers, offering valuable prognostic insights.

View Article and Find Full Text PDF

Insights on post-translational modifications in fatty liver and fibrosis progression.

Biochim Biophys Acta Mol Basis Dis

January 2025

Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India. Electronic address:

Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!