CRISPR/Cas9 genome editing technology can overcome many limitations of traditional breeding, offering enormous potential for crop improvement and food production. Although the direct delivery of Cas9-single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes to grapevine () protoplasts has been shown before, the regeneration of edited protoplasts into whole plants has not been reported. Here, we describe an efficient approach to obtain transgene-free edited grapevine plants by the transfection and subsequent regeneration of protoplasts isolated from embryogenic callus. As proof of concept, a single-copy green fluorescent protein reporter gene () in the grapevine cultivar Thompson Seedless was targeted and knocked out by the direct delivery of RNPs to protoplasts. CRISPR/Cas9 activity, guided by two independent sgRNAs, was confirmed by the loss of GFP fluorescence. The regeneration of GFP protoplasts into whole plants was monitored throughout development, confirming that the edited grapevine plants were comparable in morphology and growth habit to wild-type controls. We report the first highly efficient protocol for DNA-free genome editing in grapevine by the direct delivery of preassembled Cas9-sgRNA RNP complexes into protoplasts, helping to address the regulatory concerns related to genetically modified plants. This technology could encourage the application of genome editing for the genetic improvement of grapevine and other woody crop plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108004PMC
http://dx.doi.org/10.1093/hr/uhac240DOI Listing

Publication Analysis

Top Keywords

genome editing
16
direct delivery
12
dna-free genome
8
editing grapevine
8
rnp complexes
8
protoplasts plants
8
edited grapevine
8
grapevine plants
8
grapevine
7
protoplasts
6

Similar Publications

Background: Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus.

Method: We generated five different genomic excisions at the C9orf72 locus in a patient-derived iPSC line and a WT line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 FTD/ALS in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes.

View Article and Find Full Text PDF

Background: Our lab has developed a CRISPR-based, gene-editing strategy that targets the extreme C-terminus (C-term) of APP (amyloid precursor protein) - a gene with a central and indisputable role in AD. We have reported previously that APP C-terminus CRISPRs effectively attenuate APP β-cleavage and Alzheimer's pathology in vivo. Here, we present new data demonstrating the feasibility and efficacy of a clinically-viable, "all-in-one" therapeutic vector that has all the components needed for APP C-terminus editing (Cas enzyme / gRNAs / regulatory elements) packaged into a single AAV.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.

View Article and Find Full Text PDF

The 5,000 to 8,000 monogenic diseases are inherited disorders leading to mutations in a single gene. These diseases usually appear in childhood and sometimes lead to morbidity or premature death. Although treatments for such diseases exist, gene therapy is considered an effective and targeted method and has been used in clinics for monogenic diseases since 1989.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is an aggressive disease with poor prognosis, necessitating preclinical models for evaluating novel therapies. Large animal models are particularly valuable for assessing locoregional therapies, which are widely employed across HCC stages. This study aimed to develop a large animal HCC model with tailored tumor mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!