Almost two decades since biosimilars arrived, we still await their broader adoption, as anticipated. The roadblocks to this adoption include the high amortized cost of goods due to regulatory burden, hurdles created by the distribution system, perception of safety and efficacy, and lack of focus by stakeholders on removing these roadblocks. In this paper, I analyze the source of these roadblocks and offer practical solutions to remove them. These efforts are needed to maximize the adoption of biosimilars to encourage the entry of 100+ biological molecules that can bring affordable healthcare direly missing today across the globe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106314 | PMC |
http://dx.doi.org/10.2147/CEOR.S404175 | DOI Listing |
Plant Biotechnol J
January 2025
Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N.
View Article and Find Full Text PDFMotor axon regeneration after traumatic nerve injuries is a slow process that adversely influences patient outcomes because muscle reinnervation delays result in irreversible muscle atrophy and suboptimal axon regeneration. This advocates for investigating methods to accelerate motor axon growth. Electrical nerve stimulation and exercise both enhance motor axon regeneration in rodents and patients, but these interventions cannot always be easily implemented.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA.
bioRxiv
September 2024
University of Pittsburgh, Department of Cell Biology.
AAA+ proteins are essential molecular motors involved in numerous cellular processes, yet their mechanism of action in extracting membrane proteins from lipid bilayers remains poorly understood. One roadblock for mechanistic studies is the inability to generate subunit specific mutations within these hexameric proteins. Using the mitochondrial AAA+ protein Msp1 as a model, we created covalently linked dimers with varying combinations of wild type and catalytically inactive E193Q mutations.
View Article and Find Full Text PDFSmall
December 2024
School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, P. R. China.
The activated M1-like microglia induced neuroinflammation is the critical pathogenic event in Alzheimer's disease (AD). Microglial polarization from pro-inflammatory M1 toward anti-inflammatory M2 phenotype is a promising strategy. To efficiently accomplish this, amyloid-β (Aβ) aggregates as the culprit of M1 microglia activation should be uprooted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!