A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modular 3D-printed fluorometer/photometer for determination of iron(ii), caffeine, and ciprofloxacin in pharmaceutical samples. | LitMetric

Modular 3D-printed fluorometer/photometer for determination of iron(ii), caffeine, and ciprofloxacin in pharmaceutical samples.

RSC Adv

Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP) Araraquara São Paulo 14800-060 Brazil

Published: April 2023

The demand for the development of portable and low-cost analytical devices has encouraged studies employing additive manufacturing techniques, such as 3D-printing. This method can be used to produce components such as printed electrodes, photometers, and fluorometers for low-cost systems that provide advantages including low sample volume, reduced chemical waste, and easy coupling with LED-based optics and other instrumental devices. In the present work, a modular 3D-printed fluorometer/photometer was designed and applied for the determination of caffeine (CAF), ciprofloxacin (CIP), and Fe(ii) in pharmaceutical samples. All the plastic parts were printed separately by a 3D printer, using Tritan as the plastic material (black color). The final size of the modular 3D-printed device was 12 × 8 cm. The radiation sources were light-emitting diodes (LEDs), while a light dependent resistor (LDR) was used as a photodetector. The analytical curves obtained for the device were: = 3.00 × 10 [CAF] + 1.00 and = 0.987 for caffeine; = 6.90 × 10 [CIP] - 3.39 × 10 and = 0.991 for ciprofloxacin; and = 1.12 × 10 [Fe(ii)] + 1.26 × 10 and = 0.998 for iron(ii). The results obtained using the developed device were compared with reference methods, with no statistically significant differences observed. The 3D-printed device was composed of moveable parts, providing flexibility for adaptation and application as a photometer or fluorometer, by only switching the photodetector position. The LED could also be easily switched, permitting application of the device for different purposes. The cost of the device, including the printing and electronic components, was lower than US$10. The use of 3D-printing enables the development of portable instruments for use in remote locations with a lack of research resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108832PMC
http://dx.doi.org/10.1039/d3ra01281fDOI Listing

Publication Analysis

Top Keywords

modular 3d-printed
12
3d-printed fluorometer/photometer
8
pharmaceutical samples
8
development portable
8
3d-printed device
8
device
6
fluorometer/photometer determination
4
determination ironii
4
ironii caffeine
4
caffeine ciprofloxacin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!