Background: Plants have the unique capability to form embryos from both gametes and somatic cells, with the latter process known as somatic embryogenesis. Somatic embryogenesis (SE) can be induced by exposing plant tissues to exogenous growth regulators or by the ectopic activation of embryogenic transcription factors. Recent studies have revealed that a discrete group of RWP-RK DOMAIN-CONTAINING PROTEIN (RKD) transcription factors act as key regulators of germ cell differentiation and embryo development in land plants. The ectopic overexpression of reproductive RKDs is associated with increased cellular proliferation and the formation of somatic embryo-like structures that bypass the need for exogenous growth regulators. However, the precise molecular mechanisms implicated in the induction of somatic embryogenesis by RKD transcription factors remains unknown.
Results: In silico analyses have identified a rice RWP-RK transcription factor, named Oryza sativa RKD3 (OsRKD3), which is closely related to Arabidopsis thaliana RKD4 (AtRKD4) and Marchantia polymorpha RKD (MpRKD) proteins. Our study demonstrates that the ectopic overexpression of OsRKD3, which is expressed preferentially in reproductive tissues, can trigger the formation of somatic embryos in an Indonesian black rice landrace (Cempo Ireng) that is normally resistant to somatic embryogenesis. By analyzing the transcriptome of induced tissue, we identified 5,991 genes that exhibit differential expression in response to OsRKD3 induction. Among these genes, 50% were up-regulated while the other half were down-regulated. Notably, approximately 37.5% of the up-regulated genes contained a sequence motif in their promoter region, which was also observed in RKD targets from Arabidopsis. Furthermore, OsRKD3 was shown to mediate the transcriptional activation of a discrete gene network, which includes several transcription factors such as APETALA 2-like (AP2-like)/ETHYLENE RESPONSE FACTOR (ERF), MYB and CONSTANS-like (COL), and chromatin remodeling factors associated with hormone signal transduction, stress responses and post-embryonic pathways.
Conclusions: Our data show that OsRKD3 modulates an extensive gene network and its activation is associated with the initiation of a somatic embryonic program that facilitates genetic transformation in black rice. These findings hold substantial promise for improving crop productivity and advancing agricultural practices in black rice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114336 | PMC |
http://dx.doi.org/10.1186/s12870-023-04220-z | DOI Listing |
Pediatr Blood Cancer
December 2024
Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Background: Kaposiform lymphangiomatosis (KLA) is a complex lymphatic anomaly associated with a somatic activating NRAS p.Q61R (NRAS) mutation. KLA is characterized by malformed lymphatic vessels that can lead to effusions and coagulopathy.
View Article and Find Full Text PDFInt J Cancer
December 2024
Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China.
Wilms tumor (WT) is the most common kidney cancer in infants and young children. The determination of the clonality of bilateral WTs is critical to the treatment, because lineage-independent and metastatic tumors may require different treatment strategies. Here we found synchronous bilateral WT (n = 24 tumors from 12 patients) responded differently to preoperative chemotherapy.
View Article and Find Full Text PDFBBA Adv
November 2024
Department of Biology, Trivedi School of Biosciences, Ashoka University, No. 2 Rajiv Gandhi Educational City, Sonipat, Haryana 131029, India.
Biochemical signaling arising from mechanical force-induced physical changes in biological macromolecules is a critical determinant of key physiological processes across all biological lengths and time scales. Recent studies have deepened our understanding of how mechano-transduction regulates somatic tissues such as those in alveolar, gastrointestinal, embryonic, and skeleto-muscular systems. The germline of an organism has a heterogeneous composition - of germ cells at different stages of maturation and mature gametes, often supported and influenced by their accessory somatic tissues.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
Background: Pinus thunbergii is an economically important conifer species that plays a fundamental role in forest ecosystems. However, the population has declined dramatically in recent years as a result of the pine wilt disease outbreak. Thus, developing pine wilt-resistant P.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.
Histone modification signatures mark sites of transcriptional regulatory elements and regions of gene activation and repression. These sites vary among cell types and undergo dynamic changes during development and in diseases. Oocytes produce numerous maternal factors essential for early embryonic development, which are significantly influenced by epigenetic modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!