Quantitative image-based collagen structural features predict the reversibility of hepatitis C virus-induced liver fibrosis post antiviral therapies.

Sci Rep

Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11, Xi Zhimen South Street, Beijing, 100044, People's Republic of China.

Published: April 2023

The novel targeted therapeutics for hepatitis C virus (HCV) in last decade solved most of the clinical needs for this disease. However, despite antiviral therapies resulting in sustained virologic response (SVR), a challenge remains where the stage of liver fibrosis in some patients remains unchanged or even worsens, with a higher risk of cirrhosis, known as the irreversible group. In this study, we provided novel tissue level collagen structural insight into early prediction of irreversible cases via image based computational analysis with a paired data cohort (of pre- and post-SVR) following direct-acting-antiviral (DAA)-based treatment. Two Photon Excitation and Second Harmonic Generation microscopy was used to image paired biopsies from 57 HCV patients and a fully automated digital collagen profiling platform was developed. In total, 41 digital image-based features were profiled where four key features were discovered to be strongly associated with fibrosis reversibility. The data was validated for prognostic value by prototyping predictive models based on two selected features: Collagen Area Ratio and Collagen Fiber Straightness. We concluded that collagen aggregation pattern and collagen thickness are strong indicators of liver fibrosis reversibility. These findings provide the potential implications of collagen structural features from DAA-based treatment and paves the way for a more comprehensive early prediction of reversibility using pre-SVR biopsy samples to enhance timely medical interventions and therapeutic strategies. Our findings on DAA-based treatment further contribute to the understanding of underline governing mechanism and knowledge base of structural morphology in which the future non-invasive prediction solution can be built upon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115775PMC
http://dx.doi.org/10.1038/s41598-023-33567-4DOI Listing

Publication Analysis

Top Keywords

collagen structural
12
liver fibrosis
12
daa-based treatment
12
collagen
8
structural features
8
antiviral therapies
8
early prediction
8
fibrosis reversibility
8
features
5
quantitative image-based
4

Similar Publications

Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.

View Article and Find Full Text PDF

Background: Maternal nutrition profoundly influences offspring health, impacting both prenatal and early postnatal development. Previous studies have demonstrated that maternal dietary habits can affect key developmental pathways in the offsprings, including those related to lung function and disease susceptibility. However, the sex-specific impact of a maternal high-salt diet (HSD) on offspring lung injury remains poorly understood.

View Article and Find Full Text PDF

Protein immobilization technology is important in medical and industrial applications. We previously reported all-in-one in vitro selection, wherein a collagen-binding vascular endothelial growth factor (CB-VEGF) was identified from a fusion library of random and VEGF sequences. However, its interaction chemistry is mainly limited to the interaction established by the 20 canonical amino acids.

View Article and Find Full Text PDF

The pathophysiology of rotator cuff disease is complex, involving intrinsic and extrinsic factors that contribute to mechanical alterations, inflammation, apoptosis, and neovascularization. These changes result in structural and cellular disruptions, including inflammatory cell infiltration and collagen disorganization. Macrophages have recently gained attention as critical mediators of tissue repair and regeneration.

View Article and Find Full Text PDF

On the mechanics of networked type II collagen: Experiments, constitutive modeling, and validation.

Acta Biomater

January 2025

Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States; School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, Storrs, CT, United States. Electronic address:

In this study we investigate the mechanics of type II collagen fibrils, an essential structural component in many load-bearing tissues including cartilage. Although type II collagen plays a crucial role in maintaining tissue integrity, the stress-stretch and failure response of type II collagen fibrils in tension is not established in the current mechanics literature. To address this knowledge gap, we conducted tensile tests on isolated collagen networks from articular cartilage and established a validated constitutive model for type II collagen fibril.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!