Translational modulation based on RNA-binding proteins can be used to construct artificial gene circuits, but RNA-binding proteins capable of regulating translation efficiently and orthogonally remain scarce. Here we report CARTRIDGE (Cas-Responsive Translational Regulation Integratable into Diverse Gene control) to repurpose Cas proteins as translational modulators in mammalian cells. We demonstrate that a set of Cas proteins efficiently and orthogonally repress or activate the translation of designed mRNAs that contain a Cas-binding RNA motif in the 5'-UTR. By linking multiple Cas-mediated translational modulators, we designed and built artificial circuits like logic gates, cascades, and half-subtractor circuits. Moreover, we show that various CRISPR-related technologies like anti-CRISPR and split-Cas9 platforms could be similarly repurposed to control translation. Coupling Cas-mediated translational and transcriptional regulation enhanced the complexity of synthetic circuits built by only introducing a few additional elements. Collectively, CARTRIDGE has enormous potential as a versatile molecular toolkit for mammalian synthetic biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115826 | PMC |
http://dx.doi.org/10.1038/s41467-023-37540-7 | DOI Listing |
Brain
January 2025
Institute of Neurological Sciences and Psychiatry, Hacettepe University, 06100, Ankara, Turkey.
Cortical spreading depolarization (CSD), the neurophysiological event believed to underlie aura, may trigger migraine headaches through inflammatory signaling that originates in neurons and spreads to the meninges via astrocytes. Increasing evidence from studies on rodents and migraine patients supports this hypothesis. The transition from pro-inflammatory to anti-inflammatory mechanisms is crucial for resolving inflammation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, China.
Patellar dysplasia (PD) can cause patellar dislocation and subsequent osteoarthritis (OA) development. Herein, a novel ABCA6 mutation contributing to a four-generation family with familiar patellar dysplasia (FPD) is identified. In this study, whole exome sequencing (WES) and genetic linkage analysis across a four-generation lineage presenting with six cases of FPD are conducted.
View Article and Find Full Text PDFACS Nano
January 2025
Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Gynecology & Obstetrics, Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
Regeneration of the injured endometrium, particularly the functional layer, is crucial for the prevention of uterine infertility. At present, clinical treatment using sodium hyaluronate hydrogel injection is limited by its relatively low fluidity, short-term retention, and insufficient bioactive ingredients, so it is necessary to develop an advanced healing-promoting hydrogel. The modulation of the microenvironment by presents a bioactive component that can facilitate the regeneration of the functional layer.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
School of Medical Sciences, University of Hyderabad, Hyderabad, Telangana, India.
Purpose Of Review: This review evaluates current research on grape-based interventions and their impact on cognitive and mental health. It also explores the putative mechanisms by which the grape-derived compounds might modulate cognitive function. The growing prevalence of cognitive decline and mental health disorders necessitates exploring novel dietary approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!