Ice discharge from Greenland's marine-terminating glaciers contributes to half of all mass loss from the ice sheet, with numerous mechanisms proposed to explain their retreat. Here, we examine K.I.V Steenstrups Nordre Bræ ('Steenstrup') in Southeast Greenland, which, between 2018 and 2021, retreated ~7 km, thinned ~20%, doubled in discharge, and accelerated ~300%. This rate of change is unprecedented amongst Greenland's glaciers and now places Steenstrup in the top 10% of glaciers by contribution to ice-sheet-wide discharge. In contrast to expected behaviour from a shallow, grounded tidewater glacier, Steenstrup was insensitive to high surface temperatures that destabilised many regional glaciers in 2016, appearing instead to respond to a >2 °C anomaly in deeper Atlantic water (AW) in 2018. By 2021, a rigid proglacial mélange had developed alongside notable seasonal variability. Steenstrup's behaviour highlights that even long-term stable glaciers with high sills are vulnerable to sudden and rapid retreat from warm AW intrusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115864PMC
http://dx.doi.org/10.1038/s41467-023-37764-7DOI Listing

Publication Analysis

Top Keywords

atlantic water
8
rapid retreat
8
2018 2021
8
glaciers
5
water intrusion
4
intrusion triggers
4
triggers rapid
4
retreat regime
4
regime change
4
change stable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!