We disclose a mild, scalable, electricity-promoted cross coupling protocol between allylic iodides and disulfides/diselenides for the formation of C-S/Se bonds in the absence of transition metals, bases, and oxidants. The stereochemically different densely functionalized allylic iodides gave regio- and stereoselective diverse thioethers in good yields. This strategy demonstrates a sustainable promising approach for the synthesis of allylic thioethers in 38-80% yields. This protocol also provides a synthetic platform for the synthesis of allylic selenoethers. A single-electron transfer radical pathway was also validated with radical scavenger experiments and cyclic voltammetry data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.3c00473 | DOI Listing |
J Am Chem Soc
January 2025
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner.
View Article and Find Full Text PDFNat Commun
January 2025
College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P. R. China.
The enantioselective domino Heck/cross-coupling has emerged as a powerful tool in modern chemical synthesis for decades. Despite significant progress in relative rigid skeleton substrates, the implementation of asymmetric Heck/cross-coupling cascades of highly flexible haloalkene substrates remains a challenging and and long-standing goal. Here we report an efficient asymmetric domino Heck/Tsuji-Trost reaction of highly flexible vinylic halides with 1,3-dienes enabled by palladium catalysis.
View Article and Find Full Text PDFJ Org Chem
January 2025
Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
A one-pot, telescoped transformation of silyl ethers into cyanides that proceeds via silyl-ether oxidation mediated by nitroxyl-radical catalyst and [bis(trifluoroacetoxy)iodo]benzene followed by an imine formation-oxidation sequence using iodine and aqueous ammonia is reported. This transformation is effective for the site-selective transformation of benzylic and allylic silyl ethers in the presence of other silyl ethers. Using an -protected oxime and a catalytic amount of triflic acid instead of iodine/aqueous ammonia is also effective for cyanation.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
Allylic ethers and alcohols are essential structural motifs commonly present in natural products and pharmaceuticals. Direct allylic C-H oxygenation of internal alkenes is one of the most direct methods, bypassing the necessity for an allylic leaving group that is needed in the traditional Tsuji-Trost reaction. Herein, we develop an efficient and practical method for synthesizing (E)-allyl ethers from readily available internal alkenes and alcohols or phenols via selective allylic C-H oxidation.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
The synthesis of 2-hydroxy analogues of castanospermine from two new iminooctitols via Mitsunobu cyclization is described. The iminooctitols were derived from the dihydroxylation of an allyl alcohol intermediate, obtained by adding vinylmagnesium bromide to the C6-aldehyde of a protected 1-deoxynojirimycin. An orthogonally protected hemiacetal with silyl group at the C6-hydroxy position and remaining as benzyl ethers, synthesized in four steps from d-glucose, served as a building block in the synthesis of the 1-deoxynojirimycin intermediate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!