Introduction: Selecting a patient-specific sequencing strategy to maximize survival outcomes is a clinically unmet need for patients with castration-resistant prostate cancer (CRPC). We developed and validated an artificial intelligence-based decision support system (DSS) to guide optimal sequencing strategy selection.

Patients And Methods: Clinicopathological data of 46 covariates were retrospectively collected from 801 patients diagnosed with CRPC at 2 high-volume institutions between February 2004 and March 2021. Cox-proportional hazards regression survival (Cox) modeling in extreme gradient boosting (XGB) was used to perform survival analysis for cancer-specific mortality (CSM) and overall mortality (OM) according to the use of abiraterone acetate, cabazitaxel, docetaxel, and enzalutamide. The models were further stratified into first-, second-, and third-line models that each provided CSM and OM estimates for each line of treatment. The performances of the XGB models were compared with those of the Cox models and random survival forest (RSF) models in terms of Harrell's C-index.

Results: The XGB models showed greater predictive performance for CSM and OM compared to the RSF and Cox models. C-indices of 0.827, 0.807, and 0.748 were achieved for CSM in the first-, second-, and third-lines of treatment, respectively, while C-indices of 0.822, 0.813, and 0.729 were achieved for OM regarding each line of treatment, respectively. An online DSS was developed to provide visualization of individualized survival outcomes according to each line of sequencing strategy.

Conclusion: Our DSS can be used in clinical practice by physicians and patients as a visualized tool to guide the sequencing strategy of CRPC agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clgc.2023.03.012DOI Listing

Publication Analysis

Top Keywords

sequencing strategy
12
decision support
8
support system
8
optimal sequencing
8
castration-resistant prostate
8
prostate cancer
8
survival outcomes
8
first- second-
8
xgb models
8
cox models
8

Similar Publications

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.

View Article and Find Full Text PDF

Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.

View Article and Find Full Text PDF

Kaposiform lymphangiomatosis (KLA) is a rare and aggressive subtype of complex lymphatic anomalies (CLA), characterized by abnormal lymphatic proliferation leading to distinct clinical manifestations. Despite the complexity of this condition, there is no established standard therapy, and treatment options such as sclerotherapy, laser therapy, and surgery remain variably effective and are limited to symptom management rather than curative. Sirolimus, an mTOR pathway inhibitor, has shown promise as a primary therapy, particularly in patients without a driver mutation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!