Per- and polyfluoroalkyl substances (PFAS) are stable organic chemicals, which have been used globally since the 1940s and have caused PFAS contamination around the world. This study explores perfluorooctanoic acid (PFOA) enrichment and destruction by a combined method of sorption/desorption and photocatalytic reduction. A novel biosorbent (PG-PB) was developed from raw pine bark by grafting amine groups and quaternary ammonium groups onto the surface of bark particles. The results of PFOA adsorption at low concentration suggest that PG-PB has excellent removal efficiency (94.8%-99.1%, PG-PB dosage: 0.4 g/L) to PFOA in the concentration range of 10 μg/L to 2 mg/L. The PG-PB exhibited high adsorption efficiency regarding PFOA, being 456.0 mg/g at pH 3.3 and 258.0 mg/g at pH 7 with an initial concentration of 200 mg/L. The groundwater treatment reduced the total concentration of 28 PFAS from 18 000 ng/L to 9900 ng/L with 0.8 g/L of PG-PB. Desorption experiments examined 18 types of desorption solutions, and the results showed that 0.05% NaOH and a mixture of 0.05% NaOH + 20% methanol were efficient for PFOA desorption from the spent PG-PB. More than 70% (>70 mg/L in 50 mL) and 85% (>85 mg/L in 50 mL) of PFOA were recovered from the first and second desorption processes, respectively. Since high pH promotes PFOA degradation, the desorption eluents with NaOH were directly treated with a UV/sulfite system without further adjustment. The final PFOA degradation and defluorination efficiency in the desorption eluents with 0.05% NaOH + 20% methanol reached 100% and 83.1% after 24 h reaction. This study proved that the combination of adsorption/desorption and a UV/sulfite system for PFAS removal is a feasible solution for environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.115930DOI Listing

Publication Analysis

Top Keywords

uv/sulfite system
12
005% naoh
12
pfoa
9
combination adsorption/desorption
8
photocatalytic reduction
8
naoh 20%
8
20% methanol
8
pfoa degradation
8
desorption eluents
8
pg-pb
6

Similar Publications

Influence of aqueous constituents on hexafluoropropylene oxide trimer acid (HFPO-TA) defluorination by UV/sulfite/iodide system.

Water Sci Technol

December 2024

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

Hexafluoropropylene oxide trimer acid (HFPO-TA) is an emerging alternative to traditional perfluoroalkyl substances (PFASs), which is characterized by its biotoxicity and persistence. The UV/sulfite/iodide photo-induced hydrated electrons system can effectively degrade HFPO-TA under mild conditions. However, the effects of water quality on this system need to be urgently investigated.

View Article and Find Full Text PDF

Naphthol Green B (NGB) is a synthetic azo dye widely used in various industries, including textiles and leathers. NGB poses significant environmental and ecological concerns when released into natural water systems. This paper investigates the decolorization of NGB using UV/sulfite system.

View Article and Find Full Text PDF

Source elimination of antibiotic resistance risk in aquaculture water by VUV/sulfite pretreatment.

J Environ Manage

November 2024

Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China. Electronic address:

Antibiotic resistance risk in the aquaculture industry is increasing with the excessive consumption of antibiotics. Although various efficient technologies for the degradation of antibiotics are available, the potential risk from antibiotic resistance in treated waters is often overlooked. This study compared the risks of antibiotic resistance in anaerobic sludge fed with pretreated florfenicol (FLO) containing wastewater after four UV or vacuum UV (VUV)-driven ((V)UV-driven) pretreatments, and established the VUV/sulfite recirculating water system to validate the effect of controlling the antibiotic resistance risk in the actual aquaculture water.

View Article and Find Full Text PDF

UV/sulfite-based advanced reduction processes (ARP) have attracted increasing attention due to their high capability for removing a wide range of pollutants. Therefore, developing UV/sulfite ARP systems with assisted Artificial Intelligence (AI) models is considered an efficient strategy for sustainable pollutant removal. The present study delves into modeling and optimizing photodegradation of tetracycline (TC) antibiotics under UV/sulfite/рhenol reԁuсtion рroсess (UV/SPAP) using integrаteԁ Artifiсiаl Neurаl Networks (ANN), Suррort Veсtor Regression (SVR), аnԁ Genetiс Algorithm (GA).

View Article and Find Full Text PDF

Sorption/desorption and degradation of long- and short-chain PFAS by anion exchange resin and UV/sulfite system.

Environ Pollut

November 2024

Chemical Process Engineering, University of Oulu, P.O. Box 4300, FIN-90014, Oulu, Finland. Electronic address:

A combined sorption/desorption and UV/sulfite degradation process was investigated for achieving efficient elimination of PFAS from water. Two gel-type resins, Purolite A532E and A600, and one macroporous resin, Purolite A860, were firstly tested for the sorption of individual PFPrA, PFHxA, PFOA, PFOS, and GenX at different concentrations. Sorption data and density functional theory (DFT) calculations revealed that electrostatic interactions predominated for short-chain PFAS sorption and hydrophobic interactions played a more significant role for long-chain PFAS than for short-chain PFAS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!