A central question in ecology is understanding the influence of the spatial topology on the dynamics of a metacommunity. This is not an easy task, as most fragmented ecosystems have trophic interactions involving many species and patches. Recent attempts to solve this challenge have introduced certain simplifying assumptions or focused on a limited set of examples. These simplifications make the models mathematically tractable but keep away from real-world problems. In this paper, we provide a novel methodology to describe the influence of the spatial topology on the total population size of the species when the dispersal rates are small. The main conclusion is that the influence of the spatial topology is the result of the influence of each path in isolation. Here, a path refers to a pairwise connection between two patches. Our framework can be readily used with any metacommunity, and therefore represents a unification of biological insights. We also discuss several applications regarding the construction of ecological corridors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2023.111479 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!