The appearance of the flower marks a key event in the evolutionary history of plants. Among the four types of floral organs, the gynoecium represents the major adaptive advantage of the flower. The gynoecium is an enclosing structure that protects and facilitates the fertilization of the ovules, which then mature as seeds. Upon fertilization, in many species, the gynoecium itself eventually becomes the fruit, which contributes to the dispersal of the seeds. However, despite its importance and the recent advances in our understanding of the genetic regulatory network guiding early gynoecium development, many questions remain to be resolved regarding the extent of the conservation of the molecular mechanisms for gynoecium development among different taxa, and how these mechanisms give origin and diversification to the gynoecium. In this review, we compile the existing knowledge about the evolution, development, and molecular mechanisms involved in the origin and evolution of the gynoecium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erad135 | DOI Listing |
Plant Reprod
January 2025
Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
SHATTERPROOF 2 regulates TAA1 expression for the establishment of the gynoecium valve margins. Gynoecium development and patterning play a crucial role in determining the ultimate structure of the fruit and, thus, seed production. The MADS-box transcription factor SHATTERPROOF 2 (SHP2) contributes to valve margin differentiation and plays a major role in fruit dehiscence and seed dispersal.
View Article and Find Full Text PDFNat Plants
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
In animals and plants, organ shape is primarily determined during primordium development by carefully coordinated growth and cell division. Rare examples of post-primordial change in morphology (reshaping) exist that offer tractable systems for the study of mechanisms required for organ shape determination and diversification. One such example is morphogenesis in Capsella fruits whose heart-shaped appearance emerges by reshaping of the ovate spheroid gynoecium upon fertilization.
View Article and Find Full Text PDFGenes (Basel)
November 2024
School of Applied Technology, Lijiang Normal University, Lijiang 674199, China.
Background: is a globally distributed and extensive genus, comprising over 1000 species. In the southwestern mountains of China, there exists a remarkable diversity of , with Yunnan Province alone harboring more than 600 species. Franch.
View Article and Find Full Text PDFPlant J
January 2025
Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil.
Fruit morphogenesis is determined by the coordination of cell division and expansion, which are fundamental processes required for the development of all plant organs. Here, we show that the regulation of TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) LANCEOLATE (TCP2/LA) by miR319 is crucial for tomato fruit morphology. The loss of miR319 regulation in the semi-dominant La mutant led to a premature SlTCP2/LA expression during gynoecium patterning, which results in modified cell division during carpel development.
View Article and Find Full Text PDFPlant Reprod
November 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China.
Polarized auxin transport regulates fruit shape determination by promoting anisotropic cell growth. Angiosperms produce organs with distinct shape resultant from adaptive evolution. Understanding the cellular basis underlying the development of plant organ has been a central topic in plant biology as it is key to unlock the mechanisms leading to the diversification of plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!