There have been constant efforts to find 'exotic' quantum spin-liquid (QSL) materials. Some of the transition metal insulators dominated by the direction-dependent anisotropic exchange interaction ('Kitaev model' for honeycomb network of magnetic ions) are considered to be promising cases for the same. In such Kitaev insulators, QSL is achieved from the zero-field antiferromagnetic state by the application of magnetic-field, suppressing other exchange interactions responsible for magnetic order. Here, we show that the features attributable to long-range magnetic ordering of the intermetallic compound, TbSi, (= 69 K), containing honey-comb network of Tb ions, are completely suppressed by a critical applied field,, in heat-capacity and magnetization data, mimicking the behavior of Kitaev physics candidates. The neutron diffraction patterns as a function ofreveal that it is an incommensurate magnetic structure that gets suppressed, showing peaks arising from multiple wave vectors beyond. Increasing magnetic entropy as a function ofwith a peak in the magnetically ordered state is in support of some kind of magnetic disorder in a narrow field range after. Such a high-field behavior for a metallic heavy rare-earth system to our knowledge has not been reported in the past and therefore is intriguing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/acce8a | DOI Listing |
Small
December 2024
Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.
The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CHNH]Co(HCOO).is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co) magnets.
View Article and Find Full Text PDFMicron
December 2024
University of Science and Technology of China, Hefei 230026, China; Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China. Electronic address:
The Stabilization of bubble magnetic textures in zero magnetic field has garnered significant attention due to its potential application in spintronic devices. Herein, we employed a home-built rotatable magnetic force microscopy (MFM) to observe the evolution of magnetic domains in NiO/Ni/Ti thin films. Magnetic stripe domains decay into isolated magnetic bubbles under an out-of-plane magnetic field at 100 K, and magnetic stripes reappear when the external magnetic field is reduced to zero.
View Article and Find Full Text PDFChem Sci
December 2024
Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences Wuhan 430071 China
Proteins typically adopt a single fold to carry out their function, but metamorphic proteins, with multiple folding states, defy this norm. Deciphering the mechanism of conformational interconversion of metamorphic proteins is challenging. Herein, we employed nuclear magnetic resonance (NMR), circular dichroism (CD), and all-atom molecular dynamics (MD) simulations to elucidate the mechanism of fold switching in proteins GA95 and GB95, which share 95% sequence homology.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, 4056, Switzerland.
Many-body interactions in metal-organic frameworks (MOFs) are fundamental for emergent quantum physics. Unlike their solution counterpart, magnetization at surfaces in low-dimensional analogues is strongly influenced by magnetic anisotropy (MA) induced by the substrate and still not well understood. Here, on-surface coordination chemistry is used to synthesize on Ag(111) and superconducting Pb(111) an iron-based spin chain by using pyrene-4,5,9,10-tetraone (PTO) precursors as ligands.
View Article and Find Full Text PDFBiomed Eng Online
December 2024
Department of Bioengineering, University of Louisville, Louisville, KY, USA.
Purpose: This study aims to accurately predict the effects of hormonal therapy on prostate cancer (PC) lesions by integrating multi-modality magnetic resonance imaging (MRI) and the clinical marker prostate-specific antigen (PSA). It addresses the limitations of Convolutional Neural Networks (CNNs) in capturing long-range spatial relations and the Vision Transformer (ViT)'s deficiency in localization information due to consecutive downsampling. The research question focuses on improving PC response prediction accuracy by combining both approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!