The dynamic structure of liquid sodium is investigated using classical molecular dynamics simulations over a wide range of densities (from 739 to 4177 kg m). The interactions are described using screened pseudopotential formalism with Fiolhais model of electron-ion interaction. The effective pair potentials obtained are validated by comparing the predicted static structure, coordination number, self-diffusion coefficients and spectral density of the velocity autocorrelation function with results fromsimulations at the same state points. Both longitudinal and transverse collective excitations are computed from the corresponding structure functions and their evolution with density is investigated. The frequency of the longitudinal excitations increases with density, as well as the sound speed, which is extracted from their dispersion curves. The frequency of the transverse excitations also increases with density, but they cannot propagate over macroscopic distances and the propagation gap clearly appears. The values of the viscosity, which are extracted from these transverse functions are in good agreement with available results computed from stress autocorrelation functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/acce8b | DOI Listing |
Nanoscale Adv
January 2025
Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
In this study, we used two-dimensional electronic spectroscopy to examine the early femtosecond dynamics of suspensions of colloidal gold nanorods with different aspect ratios. In all samples, the signal distribution in the 2D maps at this timescale shows a distinctive dispersive behavior, which can be explained by the interference between the exciting field and the field produced on the nanoparticle's surface by the collective motion of electrons when the plasmon is excited. Studying this interference effect, which is active only until the plasmon has been dephased, allows for a direct estimation of the dephasing time of the plasmon of an ensemble of colloidal particles.
View Article and Find Full Text PDFSoft Matter
January 2025
Physics Department, Wesleyan University, Middletown, CT 06459, USA.
We examine the collective motion in computational models of a two-dimensional dusty plasma crystal and a charged colloidal suspension as they approach their respective melting transitions. To unambiguously identify rearrangement events in the crystal, we map the trajectory of configurations from an equilibrium molecular dynamics simulation to the corresponding sequence of configurations of local potential energy minima ("inherent structures"). This inherent structure (IS) trajectory eliminates the ambiguity that arises from localized vibrational motion.
View Article and Find Full Text PDFACS Photonics
January 2025
Laboratory of Nanoscience for Energy Technologies (LNET), Faculty of Engineering (STI), Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne 1015, Switzerland.
Circular dichroism (CD) can distinguish the handedness of the chiral molecules. However, it is typically very weak due to vanishing absorption at low molecular concentrations. Here, we suggest thermal CD (TCD) for chiral detection, leveraging the temperature difference in the chiral sample when subjected to right- and left-circularly polarized excitations.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.
View Article and Find Full Text PDFSmall
January 2025
Central Research Institute, BOE Technology Group Co. Ltd, Beijing, 100176, China.
For quantum-dot light-emitting diodes (QLED), electrical aging commonly introduces collective aging sources across all layers, making it difficult to isolate the impact of each layer on electroluminescence (EL) degradation. In this work, a layer-selective aging method using active photoexcitation is proposed, in which the photoexcitation wavelength is used to selectively target specific layers for exciton generation, and an electrical bias is applied to induce photocurrent and create charges. An iterative aging-sampling (A-S) procedure is used to link aging conditions to EL degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!