Enhancing Interfacial Strength and Wettability for Wide-Temperature Sodium Metal Batteries.

Small

Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.

Published: August 2023

Development of high-performance sodium metal batteries (SMBs) with a wide operating temperature range (from -40 to 55 °C) is highly challenging. Herein, an artificial hybrid interlayer composed of sodium phosphide (Na P) and metal vanadium (V) is constructed for wide-temperature-range SMBs via vanadium phosphide pretreatment. As evidenced by simulation, the VP-Na interlayer can regulate redistribution of Na flux, which is beneficial for homogeneous Na deposition. Moreover, the experimental results confirm that the artificial hybrid interlayer possesses a high Young's modulus and a compact structure, which can effectively suppress Na dendrite growth and alleviate the parasitic reaction even at 55 °C. In addition, the VP-Na interlayer exhibits the capability to knock down the kinetic barriers for fast Na transportation, realizing a 30-fold decrease in impedance at -40 °C. Symmetrical VP-Na cells present a prolonged lifespan reaching 1200, 500, and 500 h at room temperature, 55 °C and -40 °C, respectively. In Na V (PO ) ||VP-Na full cells, a high reversible capacity of 88, 89.8, and 50.3 mAh g can be sustained after 1600, 1000, and 600 cycles at room temperature, 55 °C and -40 °C, respectively. The pretreatment formed artificial hybrid interlayer proves to be an effective strategy to achieve wide-temperature-range SMBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202300907DOI Listing

Publication Analysis

Top Keywords

artificial hybrid
12
hybrid interlayer
12
sodium metal
8
metal batteries
8
wide-temperature-range smbs
8
vp-na interlayer
8
room temperature
8
temperature 55 °c
8
55 °c -40 °c
8
interlayer
5

Similar Publications

Background: Impairment of the visceral pleura following thoracic surgery often leads to air leaks and intrathoracic adhesions. For preventing such complications, mesothelial cell proliferation at the pleural defects can be effective. To develop new materials for pleural defects restoration, we constructed a hybrid artificial pleural tissue (H-APLT) combining polyglycolic acid (PGA) nanofiber sheets with a three-dimensional culture of mesothelial cells and fibroblasts and evaluated its therapeutic efficacy in a rat pleural defect model.

View Article and Find Full Text PDF

Graphene is a single-layered sp-hybridized carbon allotrope, which is impermeable to all atomic entities other than hydrogen. The introduction of defects allows selective gas permeation; efforts have been made to control the size of these defects for higher selectivity. Permeation of entities other than gases, such as ions, is of fundamental scientific interest because of its potential application in desalination, detection and purification.

View Article and Find Full Text PDF

The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.

View Article and Find Full Text PDF

Unlabelled: This study utilized deep learning for bone mineral density (BMD) prediction and classification using biplanar X-ray radiography (BPX) images from Huashan Hospital Medical Checkup Center. Results showed high accuracy and strong correlation with quantitative computed tomography (QCT) results. The proposed models offer potential for screening patients at a high risk of osteoporosis and reducing unnecessary radiation and costs.

View Article and Find Full Text PDF

This study introduces a hybrid network model for phase classification, integrating quantum networks and complex-valued neural networks. This architecture uses elemental composition as its only input, eliminating complex feature engineering. Parameterized quantum networks handle sparse elemental data and convert data from real to complex domains, increasing information dimensionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!