To prevent food spoilage caused by microbial infection, the development of an environmentally friendly antimicrobial preservation material is crucial. Here, the microporous γ-CD-MOFs was utilized to encapsulate the hydrophobic active substance curcumin, resulting in the preparation of a non-toxic antimicrobial material (Cur-CD-MOFs). The results revealed that curcumin encapsulation in Cur-CD-MOFs occurred primarily in the carbonyl group, benzene ring, and enolic side ring of curcumin. The Cur-CD-MOFs had a 100% bactericidal effect on Escherichia coli and Staphylococcus aureus at 4 h and 8 h, and a strong inhibitory effect on aerial mycelium of Penicillium expansum and Botrytis cinerea. Furthermore, the incorporation of Cur-CD-MOFs improved the Pul/Tre film barrier and mechanical properties. The effectiveness of Cur-CD-MOFs-Pul/Tre in retaining fruit freshness was validated using Centennial Seedless grapes. This study confirmed that Cur-CD-MOFs is a promising antibacterial material, and Cur-CD-MOFs-Pul/Tre will be a potent candidate for food preservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.136142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!