The clinical application of Pt-based anticancer drugs has inspired the development of novel chemotherapeutic metallodrugs with improved efficacies. Pt(IV) prodrugs are one of the most promising successors of Pt(II) drugs and have displayed great anticancer performance. In particular, judicious modification of axial ligands endows Pt(IV) complexes with unique properties that enable them to overcome the limitations of conventional Pt(II) drugs. Herein, we summarize recent developments in Pt(IV) anticancer complexes, with a focus on their axial functionalization with other anticancer agents, immunotherapeutic agents, photosensitive ligands, peptides, and theranostic agents. We hope that this concise view of recently reported Pt(IV) coordination complexes will help researchers to design next-generation multi-functional anticancer agents based on a comprehensive Pt(IV) platform.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2023.102303 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea.
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
In the original publication [...
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil.
Background/objectives: Dithiocarbazates (DTCs) and their metal complexes have been studied regarding their property as anticancer activities. In this work, using S-benzyl-5-hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pirazol-1-carbodithionate (Hbdtc), we prepared [ReO(bdtc)(Hbdtc)] and [[Tc]TcO(bdtc)(Hbdtc)] complexes for tumor uptake and animal biodistribution studies.
Methods: Re complex was prepared by a reaction of H2bdtc and (NBu)[ReOCl], the final product was characterized by IR, H NMR, CHN, and MS-ESI.
Pharmaceutics
January 2025
Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
Preclinical studies have shown that the anti-malarial drug hydroxychloroquine (HCQ) improves the anti-cancer effects of various therapeutic agents by impairing autophagy. These findings are difficult to translate in vivo as reaching an effective HCQ concentration at the tumor site for extended times is challenging. Previously, we found that free HCQ in combination with gefitinib (Iressa, ZD1839) significantly reduced tumor volume in immunocompromised mice bearing gefitinib-resistant JIMT-1 breast cancer xenografts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!