A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biodegradable Microspheres and Hydrogel Drug Delivery System of Tumor Necrosis Factor (TNF) Inhibitor and Growth Differentiation Factor 5 (GDF5) Reduces Disk Inflammation in the Rabbit Model. | LitMetric

Study Design: Preclinical study.

Objective: Develop and test a drug delivery system (DDS) composed of anti-inflammatories and growth factors in the rabbit disk injury model.

Summary Of Background Data: Biological therapies that inhibit inflammation or enhance cell proliferation can alter intervertebral disk (IVD) homeostasis to favor regeneration. As biological molecules have short half-lives and one molecule may not cover multiple disease pathways, effective treatments may require a combination of growth factors and anti-inflammatory agents delivered in a sustained manner.

Materials And Methods: Biodegradable microspheres were generated separately to encapsulate tumor necrosis factor alpha (TNFα) inhibitors [etanercept (ETN)] or growth differentiation factor 5 (GDF5) and were embedded into a thermoresponsive hydrogel. Release kinetics and activity of ETN and GDF5 were measured in vitro . For in vivo testing, New Zealand White rabbits (n=12) underwent surgery for disk puncture and treatment with blank-DDS, ETN-DDS, or ETN+GDF5-DDS at levels L34, L45, and L56. Radiographic and magnetic resonance images of the spines were obtained. The IVDs were isolated for histologic and gene expression analyses.

Results: ETN and GDF5 were encapsulated into poly (L-lactide-co-glycolide) microspheres and had average initial bursts of 2.4±0.1 and 11.2±0.7 μg from DDS, respectively. In vitro studies confirmed that ETN-DDS inhibited TNFα-induced cytokine release and GDF5-DDS induced protein phosphorylation. In vivo studies showed that rabbit IVDs treated with ETN+GDF5-DDS had better histologic outcomes, higher levels of extracellular, and lower levels of inflammatory gene expression than IVDs treated with blank-DDS or ETN-DDS.

Conclusions: This pilot study demonstrated that DDS can be fabricated to deliver sustained and therapeutic dosages of ETN and GDF5. In addition, ETN+GDF5-DDS may have greater anti-inflammatory and regenerative effects than ETN-DDS alone. Thus, intradiscal injection of controlled release TNF-α inhibitors and growth factors may be a promising treatment to reduce disk inflammation and back pain.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BRS.0000000000004686DOI Listing

Publication Analysis

Top Keywords

growth factors
12
etn gdf5
12
biodegradable microspheres
8
drug delivery
8
delivery system
8
tumor necrosis
8
necrosis factor
8
growth differentiation
8
differentiation factor
8
factor gdf5
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!