Liquid-liquid heat exchangers that operate in marine environments are susceptible to biofouling, which decreases the overall heat exchange between hot and cold liquids by increasing the conduction resistance. Recently, micro/nanostructured oil-impregnated surfaces have been shown to significantly reduce biofouling. However, their potential as a heat exchanger material has not been studied. Neither is it obvious since the oil used for impregnation increases the wall thickness and the associated conduction resistance. Here, by conducting extensive field and laboratory studies supported by theoretical modeling of heat transfer in oil-infused heat exchanger tubes, we report the synergistic benefits of micro/nanostructured oil-impregnated surfaces for reducing biofouling while maintaining good heat transfer. These benefits justify the use of lubricant-infused surfaces as heat exchanger materials, in particular in marine environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c00148 | DOI Listing |
Langmuir
May 2023
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
Liquid-liquid heat exchangers that operate in marine environments are susceptible to biofouling, which decreases the overall heat exchange between hot and cold liquids by increasing the conduction resistance. Recently, micro/nanostructured oil-impregnated surfaces have been shown to significantly reduce biofouling. However, their potential as a heat exchanger material has not been studied.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Energy Transport Lab, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109.
Due to its multifaceted impact in various applications, icing and ice dendrite growth has been the focus of numerous studies in the past. Dendrites on wetting (hydrophilic) and nonwetting (hydrophobic) surfaces are sharp, pointy, branching, and hairy. Here, we show a unique dendrite morphology on state-of-the-art micro/nanostructured oil-impregnated surfaces, which are commonly referred to as slippery liquid-infused porous surfaces or liquid-infused surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!