Versatile and energy-efficient neural signal processors are in high demand in brain-machine interfaces and closed-loop neuromodulation applications. In this paper, we propose an energy-efficient processor for neural signal analyses. The proposed processor utilizes three key techniques to efficiently improve versatility and energy efficiency. 1) Hybrid neural network design: The processor supports artificial neural network (ANN)- and spiking neural network (SNN)-based neuromorphic processing where ANN is used to support the processing of ExG signals and SNN is used for handling neural spike signals. 2) Event-driven processing: The processor can perform always-on binary neural network (BNN)-based event detection with low-energy consumption, and it only switches to the high-accuracy convolutional neural network (CNN)-based recognition mode when events are detected. 3) Reconfigurable architecture: By exploiting the computational similarity of different neural networks, the processor supports critical BNN, CNN, and SNN operations with the same processing elements, achieving significant area reduction and energy efficiency improvement over those of a naive implementation. It achieves 90.05% accuracy and 4.38 uJ/class in a center-out reaching task with an SNN and 99.4% sensitivity, 98.6% specificity, and 1.93 uJ/class in an EEG-based seizure prediction task with dual neural network-based event-driven processing. Moreover, it achieves a classification accuracy of 99.92%, 99.38%, and 86.39% and energy consumption of 1.73, 0.99, and 1.31 uJ/class for EEG-based epileptic seizure detection, ECG-based arrhythmia detection, and EMG-based gesture recognition, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2023.3268502DOI Listing

Publication Analysis

Top Keywords

neural network
24
neural
12
neural signal
12
hybrid neural
8
signal analyses
8
energy efficiency
8
processor supports
8
event-driven processing
8
uj/class eeg-based
8
network
6

Similar Publications

Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana.

View Article and Find Full Text PDF

Introduction: While the fact that visual stimuli synthesized by Artificial Neural Networks (ANN) may evoke emotional reactions is documented, the precise mechanisms that connect the strength and type of such reactions with the ways of how ANNs are used to synthesize visual stimuli are yet to be discovered. Understanding these mechanisms allows for designing methods that synthesize images attenuating or enhancing selected emotional states, which may provide unobtrusive and widely-applicable treatment of mental dysfunctions and disorders.

Methods: The Convolutional Neural Network (CNN), a type of ANN used in computer vision tasks which models the ways humans solve visual tasks, was applied to synthesize ("dream" or "hallucinate") images with no semantic content to maximize activations of neurons in precisely-selected layers in the CNN.

View Article and Find Full Text PDF

Dysfunction in fear and stress responses is intrinsically linked to various neurological diseases, including anxiety disorders, depression, and Post-Traumatic Stress Disorder. Previous studies using in vivo models with Immediate-Extinction Deficit (IED) and Stress Enhanced Fear Learning (SEFL) protocols have provided valuable insights into these mechanisms and aided the development of new therapeutic approaches. However, assessing these dysfunctions in animal subjects using IED and SEFL protocols can cause significant pain and suffering.

View Article and Find Full Text PDF

This study developed an artificial intelligence (AI) system using a local-global multimodal fusion graph neural network (LGMF-GNN) to address the challenge of diagnosing major depressive disorder (MDD), a complex disease influenced by social, psychological, and biological factors. Utilizing functional MRI, structural MRI, and electronic health records, the system offers an objective diagnostic method by integrating individual brain regions and population data. Tested across cohorts from China, Japan, and Russia with 1,182 healthy controls and 1,260 MDD patients from 24 institutions, it achieved a classification accuracy of 78.

View Article and Find Full Text PDF

Disrupted hippocampal functions and progressive neuronal loss represent significant challenges in the treatment of Alzheimer's disease (AD). How to achieve the improvement of pathological progression and effective neural regeneration to ameliorate the intracerebral dysfunctional environment and cognitive impairment is the goal of the current AD therapy. We examined the therapeutic potential of clinical-grade human derived dental pulp stem cells (hDPSCs) in cognitive function and neuropathology in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!