Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Activation-related sensory gating is important for sensorimotor control, filtering signals irrelevant to a task. Literature on brain lateralization suggests that motor activation patterns during sensorimotor control differ depending on arm dominance. Whether the lateralization effect extends to how sensory signals modulate during voluntary sensorimotor control remains unaddressed. We compared tactile sensory gating during voluntary motor activation between the arms of older adults. Eight right-arm dominant participants received a single-pulse, 100 μs square-wave electrotactile stimulus at their testing arm's fingertip or elbow. We identified at both arms the threshold at which the electrotactile stimulus was detected when participants were at rest (baseline) and isometrically flexing about the elbow to 25% and 50% of their maximum voluntary torque. Results reveal a difference in the detection threshold at the fingertip (p 0.001) between the arms, yet not the elbow (p = 0.264). Additionally, results demonstrate that greater isometric flexion about the elbow yields increased detection thresholds at the elbow (p = 0.005), yet not the fingertip (p = 0.069). However, the changes in detection threshold during motor activation did not significantly differ between the arms (p = 0.154). The findings regarding an impact of arm dominance and location on tactile perception are important when considering sensorimotorhaptic perception and training, including post-unilateral injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403864 | PMC |
http://dx.doi.org/10.1109/TOH.2023.3268203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!