ConspectusMetal oxide semiconductors have many features that make them attractive for both fundamental and applied studies. For example, these compounds contain elements (e.g., Fe, Cu, Ti, etc.) that are derived from minerals rendering them earth-abundant and, most often, are also not toxic. Therefore, they have been examined for possible applicability in a very diverse range of technological applications including photovoltaic solar cells, charge storage devices, displays, smart windows, touch screens, etc. The fact that metal oxide semiconductors have both - and -type conductivity makes them amenable for use as hetero- or homojunctions in microelectronic devices and as photoelectrodes in solar water-splitting devices. This Account presents a review of collaborative research on the electrosynthesis of metal oxides from our respective groups against the backdrop of key developments on this topic. The many variants that interfacial chemical modification schemes offer are shown herein to lead to the targeted synthesis of a wide array of not only simple binary metal oxides but also more complex chemistries involving multinary compound semiconductors and alloys.This Account presents our perspective on how parallel developments in the understanding of and ability to manipulate electrode-electrolyte interfaces have correspondingly enabled the innovation of a broad array of electrosynthetic strategies. These coupled with the advent of versatile tools to probe interfacial processes (undoubtedly, a child of the nanotechnology "revolution") afford an operando examination of how effective the strategies are to secure the targeted metal oxide product as well as the mechanistic nuances. Flow electrosynthesis, for example, removes many of the complications accruing from the accumulation of interfering side products─veritably, this is an Achilles heel of the electrosynthesis approach. Coupling flow electrosynthesis with downstream analysis tools based on spectroscopic or electroanalytical probes opens up the possibility of immediate process feedback and optimization. The combination of electrosynthesis, stripping voltammetry, and electrochemical quartz crystal nanogravimetry (EQCN), either in a static or in a dynamic (flow) platform, is shown below to offer intriguing possibilities for metal oxide electrosynthesis. While many of the examples below are based on our current and recent research and in other laboratories, unlocking even more potential will hinge on future refinements and innovations that surely are around the corner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.2c00838 | DOI Listing |
Med Oncol
January 2025
Department of Research Outreach, Rubber Research Institute of Nigeria, PMB 1049, Benin City, Edo State, Nigeria.
Platinum nanoparticles (PtNPs) offer significant promise in cancer therapy by enhancing the therapeutic effects of platinum-based chemotherapies like cisplatin. These nanoparticles improve tumor targeting, reduce off-target effects, and help overcome drug resistance. PtNPs exert their anti-cancer effects primarily through the generation of reactive oxygen species (ROS), which induce oxidative stress and apoptosis in cancer cells.
View Article and Find Full Text PDFSci Rep
January 2025
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, 816-8580, Japan.
This study aimed to evaluate the effects of plasma treated metal contaminated water, used for irrigation, on plant growth. Zinc (Zn) is a commonly used metal that can enter the environment through industrial processes. It may be released as particles into the atmosphere or discharged as wastewater into waterways or the ground.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Jamia, Madinah, 42351, Saudi Arabia.
This study focuses on the synthesis of a novel Cerium-Magnesium (CeO-MgO) binary oxide nanomaterials by a simple co-precipitation process and used to remove harmful pollutants such as Cr(VI), Cu(II), and F. The morphology, phase, crystallite size, thermal stability, functional groups, surface area, and porosity of the synthesized nanomaterial were determined by using XRD, SEM, FTIR, TGA/DTA, and BET studies. The prepared nanomaterials showed adsorption selectivity of Cu(II) ≈ F> Cr(VI) with a high adsorption capacity of 84.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!