Quantifying Golgi Apparatus Fragmentation Using Imaging Flow Cytometry.

Methods Mol Biol

Flow Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.

Published: April 2023

Unlike the common conception of the Golgi apparatus as a static organelle, it is, in fact, a dynamic structure, as well as a sensitive sensor for the cellular status. In response to various stimuli, the intact Golgi structure undergoes fragmentation. This fragmentation can yield either partial fragmentation, resulting in several separated chunks, or complete vesiculation of the organelle. These distinct morphologies form the basis of several methods for the quantification of the Golgi status. In this chapter, we describe our imaging flow cytometry-based method for quantifying changes in the Golgi architecture. This method has all the benefits of imaging flow cytometry-namely, it is rapid, high-throughput, and robust-while affording easy implementation and analysis capabilities.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3020-4_10DOI Listing

Publication Analysis

Top Keywords

imaging flow
12
golgi apparatus
8
quantifying golgi
4
fragmentation
4
apparatus fragmentation
4
fragmentation imaging
4
flow cytometry
4
cytometry common
4
common conception
4
golgi
4

Similar Publications

Background And Objectives: A typical workflow for deep brain stimulation (DBS) surgery consists of head frame placement, followed by stereotactic computed tomography (CT) or MRI before surgical implantation of the hardware. At some institutions, this workflow is prolonged when the imaging scanner is located far away from the operating room, thereby increasing workflow times by the addition of transport times. Recently, the intraoperative O-arm has been shown to provide accurate image fusion with preoperative CT or MR imaging, suggesting the possibility of obtaining an intraoperative localization scan and postoperative confirmation.

View Article and Find Full Text PDF

Variations in cerebral blood flow and blood volume interact with intracranial pressure and cerebrospinal fluid dynamics, all of which play a crucial role in brain homeostasis. A key physiological modulator is respiration, but its impact on cerebral blood flow and volume has not been thoroughly investigated. Here we used 4D flow MRI in a population-based sample of 65 participants (mean age = 75 ± 1) to quantify these effects.

View Article and Find Full Text PDF

In this paper, we present a new computational framework for the simulation of airway resistance, the fraction of exhaled nitric oxide, and the diffusion capacity for nitric oxide in healthy and unhealthy lungs. Our approach is firstly based on a realistic representation of the geometry of healthy lungs as a function of body mass, which compares well with data from the literature, particularly in terms of lung volume and alveolar surface area. The original way in which this geometry is created, including an individual definition of the airways in the first seven generations of the lungs, makes it possible to consider the heterogeneous nature of the lungs in terms of perfusion and ventilation.

View Article and Find Full Text PDF

Background: Heart muscle damage from myocardial infarction (MI) is brought on by insufficient blood flow. The leading cause of death for middle-aged and older people worldwide is myocardial infarction (MI), which is difficult to diagnose because it has no symptoms. Clinicians must evaluate electrocardiography (ECG) signals to diagnose MI, which is difficult and prone to observer bias.

View Article and Find Full Text PDF

This study aims to evaluate the implementation of concomitant CAD assessment on pre-TAVI (transcatheter aortic valve implantation) planning CTA (CT angiography) aided by CT-FFR (CT-fractional flow reserve) [The CT2TAVI protocol] and investigates the incremental value of CT-FFR to coronary CT angiography (CCTA) alone in the evaluation of patients undergoing CT2TAVI. This is a prospective observational real-world cohort study at an academic health system on consecutive patients who underwent CTA for TAVI planning from 1/2021 to 6/2022. This represented a transition period in our health system, from not formally reporting CAD on pre-TAVI planning CTA (Group A) to routinely reporting CAD on pre-TAVI CTA (Group B; CT2TAVI protocol).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!