The aim of the study was to compare standard high-power laser (with < 80 Hz) to extended frequency (> 100 Hz) lithotripsy during miniPCNL. 40 patients were randomized in to two groups undergoing MiniPCNL. For both groups, the Holmium Pulse laser Moses 2.0 (Lumenis) was used. For group A, standard high-power laser with < 80 Hz, with Moses distance was set using up to 3 J. For Group B, extended frequency (100-120 Hz) was used allowing up to 0.6 J. All patients underwent MiniPCNL using an 18 Fr balloon access. Demographics were comparable between groups. Mean stone diameter was 19 mm (14-23) with no differences between groups (p = 0.14). Mean operative time was 91 and 87 min for group A and B (p = 0.71), mean laser time was similar in both groups, 6.5 min and 7.5 min, respectively (p = 0.52) as well as the number of laser activations during the surgery (p = 0.43). Mean Watts used was 18 and 16 respectively being similar in both groups (p = 0.54) as well as the total KJoules (p = 0.29). Endoscopic vision was good in all surgeries. The endoscopic and radiologic stone free rate was achieved in all patients expect for two in both groups (p = 0.72). Two Clavien I complications were seen, a small bleeding for group A and a small pelvic perforation in group B. The use of high-power holmium laser with extended frequency and optimized Moses was effective and safe being comparable to standard high-power laser for MiniPCNL allowing more versatility with the setting range.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00240-023-01443-5DOI Listing

Publication Analysis

Top Keywords

high-power laser
12
standard high-power
8
moses extended
4
extended frequency
4
frequency optimized
4
optimized moses
4
moses high-power
4
laser
4
laser minipcnl
4
minipcnl randomized
4

Similar Publications

Stretchable electronics have significant applications in wearable applications. However, the extremely low thermal conductivity of elastic encapsulation hinders heat dissipation, leading to performance degradation. For instance, stretchable thermoelectric devices (TEDs) can be used for skin temperature regulation, but poor thermal management limits their cooling performance.

View Article and Find Full Text PDF

Study of Thermal Effects in Fused-Tapered Pure Passive Fibers and Signal Combiners.

Nanomaterials (Basel)

January 2025

School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.

This paper investigates the thermal effects in fused-tapered passive optical fibers under near-infrared absorption. The thermal effect is primarily caused by impurities, such as OH-, which absorb incident light and generate heat. Using the finite element method, the volume changes during fiber tapering were simulated, influencing power density and thermal distribution.

View Article and Find Full Text PDF

As an emerging two-dimensional (2D) Group-VA material, bismuth selenide (BiSe) exhibits favorable electrical and optical properties. Here, three distinct morphologies of BiSe were obtained from bulk BiSe through electrochemical intercalation exfoliation. And the morphologies of these nanostructures can be tuned by adjusting solvent polarity during exfoliation.

View Article and Find Full Text PDF

The global increase in urolithiasis prevalence has led to a shift towards minimally invasive procedures, such as retrograde intrarenal surgery, supported by advancements in laser technologies for lithotripsy. Pulsed lasers, particularly the holmium YAG and the newer thulium fiber laser, have significantly transformed the management of upper urinary tract stones. However, the use of high-power lasers in these procedures introduces risks of heat-related injury.

View Article and Find Full Text PDF

The properties and device applications of 2D semiconductors are highly sensitive to intrinsic structural defects due to their ultrathin nature. CuInSe (CIS) materials own excellent optoelectronic properties and ordered copper vacancies, making them widely applicable in photovoltaic and photodetection fields. However, the synthesis of 2D CIS nanoflakes remains challenging due to the nonlayered structure, multielement composition, and the competitive growth of various by-products, which further hinders the exploration of vacancy-related optoelectronic devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!