Late integration of vision and proprioception during perturbed reaches.

J Neurophysiol

Neuromotor Behavior Laboratory, Department of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Germany.

Published: June 2023

AI Article Synopsis

  • The study investigates how the motor system adjusts to changes during reaching movements by examining whether sensory information (visual and proprioceptive) is processed together or separately in the brain initially.
  • It was found that responding to visual perturbations takes about 100 ms longer than to proprioceptive ones, suggesting different processing speeds for sensory inputs.
  • When both sensory modalities are present (bimodal), responses are further delayed, indicating that the brain first assesses each modality separately before combining them for motor output, rather than integrating them immediately.

Article Abstract

The motor system corrects rapidly, but selectively, for perturbations to ongoing reaching movements, depending on the constraints of the task. To account for such sophistication, it has been postulated that corrections are based on an estimated limb state that integrates all sensory changes caused by the perturbation, taking into account their processing delays. Here, we asked if information from different sensory modalities is integrated immediately or processed separately in the early phase of a response. We perturbed the estimated state of the limb with both unimodal and bimodal visual and proprioceptive perturbations without changing the actual limb state. For visual perturbations, a cursor representing the hand was shifted to the left or the right relative to the true hand location. For proprioceptive perturbations, the biceps or triceps muscles were vibrated, which induced illusory limb-state changes to the right or the left. In the bimodal condition, the perturbations to vision and proprioception were either congruent or incongruent in their directions. Response latencies show that it takes ∼100 ms longer to respond to unimodal visual perturbations than to unimodal proprioceptive perturbations. Responses to bimodal perturbations show that it takes an additional ∼100 ms beyond the response to unimodal visual perturbations for intermodal consistency to impact the response. These results suggest that visual and proprioceptive signals are initially processed separately for state estimation and only combined at the level of the limb's motor output, instead of being immediately integrated into a single state estimate of the limb. Both visual and proprioceptive signals provide information about arm state during reaching. By perturbing the perceived, but not the actual, position of the hand in both modalities using visual disturbances and muscle vibration, we examined multimodal integration and state estimation during reaching. Our results suggest that the early reach corrections are based on separate state estimates from the two sensory modalities and only later are based on a combined state estimate.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00324.2022DOI Listing

Publication Analysis

Top Keywords

visual proprioceptive
12
proprioceptive perturbations
12
visual perturbations
12
perturbations
9
state
9
vision proprioception
8
corrections based
8
limb state
8
sensory modalities
8
processed separately
8

Similar Publications

Women show enhanced proprioceptive target estimation through visual-proprioceptive conflict resolution.

Front Psychol

December 2024

Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.

To form a unified and coherent perception of the organism's state and its relationship with the surrounding environment, the nervous system combines information from various sensory modalities through multisensory integration processes. Occasionally, data from two or more sensory channels may provide conflicting information. This is particularly evident in experiments using the mirror-guided drawing task and the mirror-box illusion, where there is conflict between positional estimates guided by vision and proprioception.

View Article and Find Full Text PDF

Objective: This study investigated the effects of sleep deprivation (SD) on balance after normal sleep, 24 h of SD, and subsequent rest under eyes-open (EO) and eyes-closed (EC) conditions. Our aim was to ascertain whether the reduced efficiency of balance control following SD is generalized or selective.

Method: Nineteen participants (12 females, 7 males) completed the Pittsburgh Sleep Quality Index (PSQI).

View Article and Find Full Text PDF

Patients with Parkinson's disease (PD) notably exhibit impairments in posture and visual attention. The objective of the present study was to determine whether PD patients were able to exhibit adaptive postural control in a goal-directed visual task. We hypothesized that the patients would reduce their centre of pressure (COP) movement and/or postural sway to a lesser extent than age-matched controls in the goal-directed visual (search) task, compared with the control free-viewing task (i.

View Article and Find Full Text PDF

Introduction: Although single-stage bilateral total knee arthroplasty (BTKA) presents several advantages, higher perioperative blood loss is a potentiate drawback that is still inevitable. Cruciate retaining (CR) TKA may theoretically result in less blood loss, offer better proprioception, and more physiologic kinematics compared to posterior stabilized (PS) TKA. The objective of this study was to compare perioperative blood loss and recovery among patients who underwent CR and PS BTKA.

View Article and Find Full Text PDF

We examined the impact of auditory stimuli and their methods on a dynamic balance task performance. Twenty-four young adults wore an HTC Vive headset and dodged a virtual ball to the right or left based on its color (blue to the left, red to the right, and vice versa). We manipulated the environment by introducing congruent (auditory stimuli from the correct direction) or incongruent (auditory stimuli played randomly from either side) and comparing a multimodal (visual and congruent auditory stimuli) to unimodal (visual or auditory stimuli) presentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!