A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unveiling and Modulating the Interfacial Reaction at the Metal-Hole Conductor Heterojunction toward Reliable Perovskite Solar Cells. | LitMetric

Unveiling and Modulating the Interfacial Reaction at the Metal-Hole Conductor Heterojunction toward Reliable Perovskite Solar Cells.

ACS Appl Mater Interfaces

College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China.

Published: May 2023

Interfaces between functional layers in perovskite solar cells (PSCs) are of paramount importance in determining their efficiency and stability, but the interaction and stability of metal-hole conductor (HC) interfaces have received less attention. Here, we discover an intriguing transient behavior in devices which induces a profound efficiency fluctuation from 9 to 20% during the initial performance testing. Air exposure (e.g., oxygen and moisture) can significantly accelerate this nonequilibrium process and simultaneously enhance the device maximal efficiency. Structural analysis reveals that the chemical reaction between Ag and HC occurred during the metal deposition by thermal evaporation, leading to the formation of an insulating barrier layer at their interfaces, which results in a high charge-transport barrier and poor device performance. Accordingly, we propose a metal diffusion-associated barrier evolution mechanism to understand the metal/HC interfaces. To mitigate these detrimental effects, we strategically develop an interlayer strategy by introducing an ultrathin layer of molybdenum oxide (MoO) between Ag and HC, which is found to effectively suppress the interfacial reaction, yielding highly reliable PSCs with instant high efficiency. This work provides new insights into understanding the metal-organic interfaces, and the developed interlayer strategy can be generally applicable to engineer other interfaces in realizing efficient and stable contacts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c02062DOI Listing

Publication Analysis

Top Keywords

interfacial reaction
8
metal-hole conductor
8
perovskite solar
8
solar cells
8
interlayer strategy
8
interfaces
6
unveiling modulating
4
modulating interfacial
4
reaction metal-hole
4
conductor heterojunction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!