Assisted reproduction procedures often encounter an issue called oocyte maturation arrest (OMA), which is manifested as failed IVF/ICSI attempts using oocytes from some infertile women. In this issue of EMBO Molecular Medicine, Wang et al identify infertile women bearing novel DNA sequence variants in a gene called PABPC1L, which is essential for translation of maternal mRNAs. By conducting a series of in vitro and in vivo experiments, they demonstrated certain variants as being causal for OMA, confirming a conserved requirement for PABPC1L in human oocyte maturation. This study offers a promising therapeutic target for treating OMA patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245026 | PMC |
http://dx.doi.org/10.15252/emmm.202317729 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Woolcock Institute for Medical Research, University of Technology, Sydney, NSW, Australia.
Introduction: It is well acknowledged that lipids assume a critical role in oocyte maturation and early embryonic metabolism, this study aimed to evaluate the relationship between the lipid composition of plasma and follicular fluid (FF), and the consequences of embryonic development. This study compared the lipidomic profiles of paired plasma and FF samples obtained from sixty-five Chinese women who underwent assisted reproductive technology (ART) treatments.
Methods: Non-targeted lipidomics analysis.
Histol Histopathol
December 2024
Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Türkiye.
Diabetes mellitus (DM) causes numerous systemic diseases in animals and humans. This may also lead to reproductive problems among individuals of reproductive age. Detrimental effects such as apoptosis in ovarian granulosa cells, degradation of communication proteins, decreased oocyte quality, delayed meiotic maturation, and atrophy are among the increasing evidence that chronic hyperglycemia causes reproductive problems.
View Article and Find Full Text PDFAging Cell
January 2025
The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
The decline of oocyte quality with advanced maternal age has a detrimental effect on female fertility. However, there is limited knowledge of therapeutic options and their mechanisms to improve oocyte quality in reproductively older women. In this study, we demonstrated that supplementation of salidroside improves the oocyte quality of reproductively old mice.
View Article and Find Full Text PDFLife Sci
January 2025
Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea; Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea. Electronic address:
Telomerase is highly expressed in oocyte cumulus cells and plays a significant role in follicular development and oocyte maturation. In this study, we hypothesized that in vitro culture conditions may affect telomerase activity during in vitro embryo production (IVP) and that its activation may improve embryo quality. We first examined telomerase protein levels and localization in bovine cumulus-oocyte complexes via immunofluorescence assays.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China. Electronic address:
The use of Bisphenol A (BPA) has been widely restricted due to its adverse health effects. Bisphenol Z (BPZ) is used as an alternative to BPA, and humans are widely exposed to BPZ through various routes. Recent studies have shown that BPZ exposure adversely affects mouse oocyte meiotic maturation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!