A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine-learning-assisted discovery of boron-doped graphene with high work function as an anode material for Li/Na/K-ion batteries. | LitMetric

Work function (WF) modulation is a crucial descriptor for carbon-based electrodes in optoelectronic, catalytic, and energy storage applications. Boron-doped graphene is envisioned as a highly promising anode material for alkali metal-ion batteries (MIBs). However, due to the large structural space concerning various doping concentrations, the lack of both datasets and effective methods hinders the discovery of boron-doped graphene with a high WF that generally leads to strong adsorption. Herein, we propose a machine-learning-assisted approach to discover the target, where a Crystal Graph Convolutional Neural Network was developed to efficiently predict the WF for all possible configurations. As a result, the BC structure is found to have the highest WF in the entire space containing 566 211 structures. In addition, it is revealed that the adsorption energy of alkali metals is linearly related to the WF of the substrate. Therefore, the screened BC is investigated as an anode for Li/Na/K-ion batteries, and it possesses a higher theoretical specific capacity of 2262/2546/1131 mA h g for Li/Na/K-ion batteries compared with that of pristine graphene and other boron-doped graphene. Our work provides an effective way to locate possible high-WF structures in heteroatom-doped systems, which may accelerate future screening of promising adsorbents for alkali metals.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp00669gDOI Listing

Publication Analysis

Top Keywords

boron-doped graphene
16
li/na/k-ion batteries
12
discovery boron-doped
8
graphene high
8
work function
8
anode material
8
alkali metals
8
graphene
5
machine-learning-assisted discovery
4
boron-doped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!