AI Article Synopsis

Article Abstract

G protein-coupled receptors (GPCRs) transmit signals from drugs across cell membranes, leading to associated physiological effects. To study the structural basis of the transmembrane signalling, in-membrane chemical modification (IMCM) has previously been introduced for F-labelling of GPCRs expressed in Spodoptera frugiperda (Sf9) insect cells. Here, IMCM is used with the A adenosine receptor (A AR) expressed in Pichia pastoris; F-NMR revealed nearly complete solvent protection of the A AR transmembrane domain in the membrane and in 2,2-didecylpropane-1,3-bis-β-D-maltopyranoside (LMNG)/cholesteryl hemisuccinate (CHS) micelles, and extensive solvent accessibility for A AR in n-dodecyl β-D-maltoside (DDM)/CHS micelles. No Cys residue dominated non-specific labelling with 2,2,2-trifluoroethanethiol. These observations yield an improved protocol for IMCM F-labelling of GPCRs and new insights into variable solvent accessibility for function-related characterization of GPCRs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.14627DOI Listing

Publication Analysis

Top Keywords

solvent accessibility
12
transmembrane domain
8
in-membrane chemical
8
chemical modification
8
modification imcm
8
f-labelling gpcrs
8
solvent
4
accessibility gpcr
4
gpcr transmembrane
4
domain probed
4

Similar Publications

Nowadays, several processes to enrich desired bioactive compounds in plant extracts have been developed. The objective of the present study was to assess the performance of bovine serum albumin in increasing the extractive yields of anthraquinones and diarylheptanoids from their respective raw plant powder extracts. Aloe emodin, rhein, emodin, and chrysophanol, from , , , and , and curcumin from were analyzed in parent dry extracts, solubilized either with water, ethanol, or hydro-alcoholic mixtures, and in ones treated with aqueous solutions of bovine serum albumin by HPLC with UV/Vis detection.

View Article and Find Full Text PDF

Predicting the relative solvent accessibility (RSA) of a protein is critical to understanding its 3D structure and biological function. RSA prediction, especially when homology transfer cannot provide information about a protein's structure, is a significant step toward addressing the protein structure prediction challenge. Today, deep learning is arguably the most powerful method for predicting RSA and other structural features of proteins.

View Article and Find Full Text PDF

Acetohydroxyacid synthase (AHAS) is a vital enzyme in Mycobacterium tuberculosis, the pathogen causing tuberculosis (TB), involved in branched-chain amino acid synthesis. Targeting AHAS for drug design against TB offers a promising strategy due to its essentiality in bacterial growth. In current investigation, we have designed 160 novel compounds by leveraging key scaffolds identified through structure-based drug design (SBDD) methodologies.

View Article and Find Full Text PDF

Recent research has identified sex-dependent links between risk taking behaviors, approach-avoidance bias and alcohol intake. However, preclinical studies have typically assessed alcohol drinking using a singular dimension of intake (i.e.

View Article and Find Full Text PDF

n-Alkyltrimethylammonium bromide (CTAB)-based deep eutectic solvent (DESs) has potential in the efficient delignification and utilization of carbohydrates in biomass. In this research, DESs containing Brønsted acid and Lewis acid were prepared with CTAB (alkyl-chain length 12-18), organic acids and metal chlorides, and the optimal treatment conditions were acquired by pretreatment optimization. Through the pretreatment with TTAB/LCA/Fe (1:4:0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!