Prebiotics have long been used to modulate the gut microbiota and improve host health. Most established prebiotics are nondigestible carbohydrates, especially short-chain oligosaccharides. Recently, gluco-oligosaccharides (GlcOS) with 2-10 glucose residues and one or more O-glycosidic linkage(s) have been found to exert prebiotic potentials (not fully established prebiotics) because of their selective fermentation by beneficial gut bacteria. However, the prebiotic effects (non-digestibility, selective fermentability, and potential health effects) of GlcOS are highly variable due to their complex structure originating from different synthesis processes. The relationship between GlcOS structure and their potential prebiotic effects has not been fully understood. To date, a comprehensive summary of the knowledge of GlcOS is still missing. Therefore, this review provides an overview of GlcOS as potential prebiotics, covering their synthesis, purification, structural characterization, and prebiotic effect evaluation. First, GlcOS with different structures are introduced. Then, the enzymatic and chemical processes for GlcOS synthesis are critically reviewed, including reaction mechanisms, substrates, catalysts, the structures of resultant GlcOS, and the synthetic performance (yield and selectivity). Industrial separation techniques for GlcOS purification and structural characterization methods are discussed in detail. Finally, in vitro and in vivo studies to evaluate the non-digestibility, selective fermentability, and associated health effects of different GlcOS are extensively reviewed with a special focus on the GlcOS structure-function relationship.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1541-4337.13156DOI Listing

Publication Analysis

Top Keywords

purification structural
12
structural characterization
12
glcos
11
potential prebiotics
8
synthesis purification
8
established prebiotics
8
prebiotic effects
8
non-digestibility selective
8
selective fermentability
8
health effects
8

Similar Publications

Waterborne bacteria pose a serious hazard to human health, hence a precise detection method is required to identify them. A photonic crystal fiber sensor that takes into account the dangers of aquatic bacteria has been suggested, and its optical characteristics in the THz range have been quantitatively assessed. The PCF sensor was designed and examined as computed in Comsol Multiphysics, a program in which uses the method of "Finite Element Method" (FEM).

View Article and Find Full Text PDF

Calprotectin's Protein Structure Shields Ni-N(His) Bonds from Competing Agents.

J Phys Chem Lett

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.

View Article and Find Full Text PDF

Quinoa polysaccharides have attracted significant research interest in recent years due to their diverse biological activities, including antiviral, anti-inflammatory, antioxidant, and immunoregulatory properties. These attributes align with the growing global demand for natural, functional food ingredients, positioning quinoa polysaccharides as a valuable resource in food science and technology. This review presents an overview of the various bioactivities of quinoa polysaccharides, critically evaluates the methods used for their extraction and purification, describes their structural characteristics, and discusses their practical applications across multiple areas within the food industry, including food additives, meat products, health foods, and innovative food packaging.

View Article and Find Full Text PDF

Human activities such as agriculture and urban development are linked to water quality degradation. Canada represents a large and heterogeneous landscape of freshwater lakes, where variations in climate, geography and geology interact with land cover alteration to influence water quality differently across regions. In this study, we investigated the influence of water quality and land use on bacterial communities across 12 ecozones.

View Article and Find Full Text PDF

Intracellular protein production in bacteria is limited by the need for lysis and costly purification. A promising alternative is to engineer the host organism for protein secretion. While the serovar Typhimurium ( .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!