A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamical chaos in nonlinear Schrödinger models with subquadratic power nonlinearity. | LitMetric

We devise an analytical method to deal with a class of nonlinear Schrödinger lattices with random potential and subquadratic power nonlinearity. An iteration algorithm is proposed based on the multinomial theorem, using Diophantine equations and a mapping procedure onto a Cayley graph. Based on this algorithm, we are able to obtain several hard results pertaining to asymptotic spreading of the nonlinear field beyond a perturbation theory approach. In particular, we show that the spreading process is subdiffusive and has complex microscopic organization involving both long-time trapping phenomena on finite clusters and long-distance jumps along the lattice consistent with Lévy flights. The origin of the flights is associated with the occurrence of degenerate states in the system; the latter are found to be a characteristic of the subquadratic model. The limit of quadratic power nonlinearity is also discussed and shown to result in a delocalization border, above which the field can spread to long distances on a stochastic process and below which it is Anderson localized similarly to a linear field.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.034203DOI Listing

Publication Analysis

Top Keywords

power nonlinearity
12
nonlinear schrödinger
8
subquadratic power
8
dynamical chaos
4
chaos nonlinear
4
schrödinger models
4
models subquadratic
4
nonlinearity devise
4
devise analytical
4
analytical method
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!