The dynamics of a harmonically trapped three-dimensional Yukawa ball of charged dust particles immersed in plasma is investigated as function of external magnetic field and Coulomb coupling parameter using molecular dynamics simulation. It is shown that the harmonically trapped dust particles organize themselves into nested spherical shells. The particles start rotating in a coherent order as the magnetic field reaches a critical value corresponding to the coupling parameter of the system of dust particles. The magnetically controlled charged dust cluster of finite size undergoes a first-order phase transition from disordered to ordered phase. At sufficiently high coupling and strong magnetic field, the vibrational mode of this finite-sized charged dust cluster freezes, and the system retains only rotational motion.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.035206DOI Listing

Publication Analysis

Top Keywords

charged dust
16
dust particles
12
magnetic field
12
phase transition
8
finite-sized charged
8
harmonically trapped
8
coupling parameter
8
dust cluster
8
dust
6
transition three-dimensional
4

Similar Publications

Self-crystal electret poly(lactic acid) nanofibers for high-flow air purification and AI-assisted respiratory diagnosis.

J Hazard Mater

December 2024

School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008,  China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China. Electronic address:

Particulate matters (PMs), one of the major airborne pollutants, continue to seriously threaten human health and the environment. Here, a self-crystal-induced electret enhancement (SCIEE) strategy was developed to promote the in-situ electret effect and polarization properties of electrospun poly(L-lactic acid) (PLLA) nanofibers. The strategy specifically involved the elaborate pre-structuring of stereocomplex crystals (SCs) with uniform dimensions (∼300 nm), which were introduced into PLLA electrospinning solution as the electrets and physical cross-linking points of high density.

View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen adsorption isotherms and the BET model are commonly used to estimate the surface area of biochar, but they often yield low surface area results that don't align with the material's high sorption capacities.
  • In contrast, this study suggests that water adsorption may provide a more accurate estimation of biochar surface area, as it showed better alignment with properties like cation exchange capacity.
  • Results indicated that while nitrogen gas adsorption energies were higher, the nitrogen surface areas were lower compared to those derived from water vapour, showing how pyrolysis temperature affects these measurements differently.
View Article and Find Full Text PDF

Dust accumulation on solar panels is a mjor operational challenge faced by the photovoltaic industry. Removing dust using water-based cleaning is expensive and unsustainable. Dust repulsion via charge induction is an efficient way to clean solar panels and recover power output without consuming any water.

View Article and Find Full Text PDF

It is long known that particles of the same material but with different sizes charge with different polarities in mutual collisions. In most cases, the smaller grains become negative. Here, we study tribocharging of (sub-)mm dust aggregates in the course of microgravity experiments by determining the charges of particles through their motion within an electric field.

View Article and Find Full Text PDF

The alignment control of liquid crystals (LCs) is critical for various practical applications. The pretilt angle modulation of LCs typically requires a mechanical rubbing on substrates to orient the LCs. This study presents a contact-free approach to achieve pretilt angle modulation of LCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!