Background: Misdiagnoses of headache disorders are a serious issue. Therefore, we developed an artificial intelligence-based headache diagnosis model using a large questionnaire database in a specialized headache hospital.
Methods: Phase 1: We developed an artificial intelligence model based on a retrospective investigation of 4000 patients (2800 training and 1200 test dataset) diagnosed by headache specialists. Phase 2: The model's efficacy and accuracy were validated. Five non-headache specialists first diagnosed headaches in 50 patients, who were then re-diagnosed using AI. The ground truth was the diagnosis by headache specialists. The diagnostic performance and concordance rates between headache specialists and non-specialists with or without artificial intelligence were evaluated.
Results: Phase 1: The model's macro-average accuracy, sensitivity (recall), specificity, precision, and F values were 76.25%, 56.26%, 92.16%, 61.24%, and 56.88%, respectively, for the test dataset. Phase 2: Five non-specialists diagnosed headaches without artificial intelligence with 46% overall accuracy and 0.212 kappa for the ground truth. The statistically improved values with artificial intelligence were 83.20% and 0.678, respectively. Other diagnostic indexes were also improved.
Conclusions: Artificial intelligence improved the non-specialist diagnostic performance. Given the model's limitations based on the data from a single center and the low diagnostic accuracy for secondary headaches, further data collection and validation are needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/03331024231156925 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!