Laminar membranes comprising graphene oxide (GO) and metal-organic framework (MOF) nanosheets benefit from the regular in-plane pores of MOF nanosheets and thus can support rapid water transport. However, the restacking and agglomeration of MOF nanosheets during typical vacuum filtration disturb the stacking of GO sheets, thus deteriorating the membrane selectivity. Therefore, to fabricate highly permeable MOF nanosheets/reduced GO (rGO) membranes, a two-step method is applied. First, using a facile solvothermal method, ZnO nanoparticles are introduced into the rGO laminate to stabilize and enlarge the interlayer spacing. Subsequently, the ZnO/rGO membrane is immersed in a solution of tetrakis(4-carboxyphenyl)porphyrin (H TCPP) to realize in situ transformation of ZnO into Zn-TCPP in the confined interlayer space of rGO. By optimizing the transformation time and mass loading of ZnO, the obtained Zn-TCPP/rGO laminar membrane exhibits preferential orientation of Zn-TCPP, which reduces the pathway tortuosity for small molecules. As a result, the composite membrane achieves a high water permeance of 19.0 L m  h  bar and high anionic dye rejection (>99% for methyl blue).

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202300672DOI Listing

Publication Analysis

Top Keywords

mof nanosheets
12
interlayer space
8
metal-organic framework
8
highly permeable
8
two-dimensional interlayer
4
space induced
4
induced horizontal
4
horizontal transformation
4
transformation metal-organic
4
nanosheets
4

Similar Publications

Accurate stacking engineering of MOF nanosheets as membranes for precise H sieving.

Nat Commun

December 2024

Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

Two-dimensional (2D) metal-organic framework (MOF) nanosheet membranes hold promise for exact molecular transfer due to their structural diversity and well-defined in-plane nanochannels. However, achieving precise regulation of stacking modes between neighboring nanosheets in membrane applications and understanding its influence on separation performance remains unrevealed and challenging. Here, we propose a strategy for accurately controlling the stacking modes of MOF nanosheets via linker polarity regulation.

View Article and Find Full Text PDF

Design of hierarchical hollow nanoheterostructure materials through interfacial and defect engineering is an innovative approach for achieving optimal charge separation dynamics and photon harvesting efficiency. Herein, we have described a facile technique to fabricate hollow MOF-derived C, N-doped-CoO (C, N-CoO) dodecahedral particles enwrapped with MgInS nanosheets for enhanced N reduction performance. ZIF-67 was initially used as a sacrificial template to prepare hollow C, N-CoO using a carbonization route followed by low-temperature calcination treatment.

View Article and Find Full Text PDF

2D MoC i-MXene is highly promising for electrochemical applications. Here, a synthetic strategy is reported, enabling the uniform distribution of carbon-coated CoNi (CoNi@C) nanoparticles on the vacancy-ordered MoC i-MXene nanosheets, thereby fully exposing the active sites of CoNi@C. First, five novel Ga-containing (MoR)GaC (R = Dy, Ho, Er, Tm, and Lu) i-MAX phases are synthesized as the precursor and found to be crystallized into Cmcm structure, followed by hydrothermal etching and delamination.

View Article and Find Full Text PDF
Article Synopsis
  • - A new metal-organic framework (MOF), labeled as 1, was created with a unique structure and showed significant CO gas adsorption capacities at low temperatures.
  • - By immersing the original MOF in 4-picoline, researchers produced nanosheets (1-ns) that have a different, two-dimensional structure, with thorough characterization confirming their properties.
  • - The 1-ns exhibited better electrochemical performance compared to the original 3D structure (1) and showed potential for oil/water separation due to its hydrophobic surfaces, highlighting diverse applications for these materials.
View Article and Find Full Text PDF

Effect of Sulfur Vacancies of CoNiS on Its Electrochemical Performance in Hybrid Supercapacitors.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Ternary cobalt nickel sulfides are considered promising electrode materials due to their unique physical properties. However, its capacitive performance is still limited by the insufficient material utilization efficiency. Here, we design and fabricate CoNiS with nanorods and hairy-petal-like nanosheets on nickel foam (NF) as an excellent self-standing electrode for a hybrid supercapacitor (HSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!