Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114308 | PMC |
http://dx.doi.org/10.1186/s13054-023-04425-6 | DOI Listing |
Front Psychol
December 2024
Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States.
Introduction: While the fact that visual stimuli synthesized by Artificial Neural Networks (ANN) may evoke emotional reactions is documented, the precise mechanisms that connect the strength and type of such reactions with the ways of how ANNs are used to synthesize visual stimuli are yet to be discovered. Understanding these mechanisms allows for designing methods that synthesize images attenuating or enhancing selected emotional states, which may provide unobtrusive and widely-applicable treatment of mental dysfunctions and disorders.
Methods: The Convolutional Neural Network (CNN), a type of ANN used in computer vision tasks which models the ways humans solve visual tasks, was applied to synthesize ("dream" or "hallucinate") images with no semantic content to maximize activations of neurons in precisely-selected layers in the CNN.
Clin Med Insights Oncol
January 2025
Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON, Canada.
Despite the expanding therapeutic options available to cancer patients, therapeutic resistance, disease recurrence, and metastasis persist as hallmark challenges in the treatment of cancer. The rise to prominence of generative artificial intelligence (GenAI) in many realms of human activities is compelling the consideration of its capabilities as a potential lever to advance the development of effective cancer treatments. This article presents a hypothetical case study on the application of generative pre-trained transformers (GPTs) to the treatment of metastatic prostate cancer (mPC).
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan.
We study the emergence of agency from scratch by using Large Language Model (LLM)-based agents. In previous studies of LLM-based agents, each agent's characteristics, including personality and memory, have traditionally been predefined. We focused on how individuality, such as behavior, personality, and memory, can be differentiated from an undifferentiated state.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, United States.
Background: The increasing use of social media to share lived and living experiences of substance use presents a unique opportunity to obtain information on side effects, use patterns, and opinions on novel psychoactive substances. However, due to the large volume of data, obtaining useful insights through natural language processing technologies such as large language models is challenging.
Objective: This paper aims to develop a retrieval-augmented generation (RAG) architecture for medical question answering pertaining to clinicians' queries on emerging issues associated with health-related topics, using user-generated medical information on social media.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!