Steric Communication between Dynamic Components on DNA Nanodevices.

ACS Nano

Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States.

Published: May 2023

Biomolecular nanotechnology has helped emulate basic robotic capabilities such as defined motion, sensing, and actuation in synthetic nanoscale systems. DNA origami is an attractive approach for nanorobotics, as it enables creation of devices with complex geometry, programmed motion, rapid actuation, force application, and various kinds of sensing modalities. Advanced robotic functions like feedback control, autonomy, or programmed routines also require the ability to transmit signals among subcomponents. Prior work in DNA nanotechnology has established approaches for signal transmission, for example through diffusing strands or structurally coupled motions. However, soluble communication is often slow and structural coupling of motions can limit the function of individual components, for example to respond to the environment. Here, we introduce an approach inspired by protein allostery to transmit signals between two distal dynamic components through steric interactions. These components undergo separate thermal fluctuations where certain conformations of one arm will sterically occlude conformations of the distal arm. We implement this approach in a DNA origami device consisting of two stiff arms each connected to a base platform via a flexible hinge joint. We demonstrate the ability for one arm to sterically regulate both the range of motion and the conformational state (latched or freely fluctuating) of the distal arm, results that are quantitatively captured by mesoscopic simulations using experimentally informed energy landscapes for hinge-angle fluctuations. We further demonstrate the ability to modulate signal transmission by mechanically tuning the range of thermal fluctuations and controlling the conformational states of the arms. Our results establish a communication mechanism well-suited to transmit signals between thermally fluctuating dynamic components and provide a path to transmitting signals where the input is a dynamic response to parameters like force or solution conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173695PMC
http://dx.doi.org/10.1021/acsnano.2c12455DOI Listing

Publication Analysis

Top Keywords

dynamic components
12
transmit signals
12
dna origami
8
signal transmission
8
thermal fluctuations
8
distal arm
8
demonstrate ability
8
components
5
steric communication
4
dynamic
4

Similar Publications

Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).

View Article and Find Full Text PDF

Data from large-scale, randomized, controlled trials demonstrate that contemporary treatments for heart failure (HF) can substantially improve morbidity and mortality. Despite this, observed outcomes for patients living with HF are poor, and they have not improved over time. The are many potential reasons for this important problem, but inadequate use of optimal medical therapy for patients with HF, an important component of guideline-directed medical therapy, in routine practice is a principal and modifiable contributor.

View Article and Find Full Text PDF

Reversible Isomerization of Stiff-Stilbene by an Oriented External Electric Field.

J Am Chem Soc

January 2025

Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy.

View Article and Find Full Text PDF

Animal growth is a fundamental component of population dynamics, which is closely tied to mortality, fecundity, and maturation. As a result, estimating growth often serves as the basis of population assessments. In fish, analysing growth typically involves fitting a growth model to age-at-length data derived from counting growth rings in calcified structures.

View Article and Find Full Text PDF

Bird Species Detection Net: Bird Species Detection Based on the Extraction of Local Details and Global Information Using a Dual-Feature Mixer.

Sensors (Basel)

January 2025

Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China.

Bird species detection is critical for applications such as the analysis of bird population dynamics and species diversity. However, this task remains challenging due to local structural similarities and class imbalances among bird species. Currently, most deep learning algorithms focus on designing local feature extraction modules while ignoring the importance of global information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!